Трехполярный конденсатор tesla сделать своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 02.09.2024

Никола Тесла, как и многие другие физики, многие годы своей жизни посвятил изучению энергии токов и способам ее передачи, созданию уникальных разработок. Одной из них была катушка Тесла – это резонансный трансформатор, предназначенный для получения токов высокой частоты.

Тесла, определенно, был гением. Именно он принес в мир использование переменного тока и запатентовал множество изобретений. Одно из них - знаменитая катушка, или трансформатор Тесла. Если у вас есть определенные знания и навыки, вы вполне можете самостоятельно создать катушку Тесла дома. Давайте выяснять, какова суть этого устройства и как создать его в домашних условиях, если вам вдруг этого очень сильно захотелось.

Что такое катушка Тесла и зачем она нужна?

Как уже отмечалось ранее, катушка Тесла представляет собой резонансный трансформатор. Назначение трансформатора - изменение значения напряжения электрического тока. Эти приборы бывают соответственно понижающие и повышающие.

Более подробно подробно о трансформаторах, их общем устройстве и назначении читайте в нашем отдельном материале.

С точки зрения электроники катушка Тесла представляет собой две обмотки без общего сердечника и с разным числом витков. Трансформатор Тесла - повышающий трансформатор. Напряжение на выходе такого трансформатора возрастает в сотни раз и может достигать значений порядка миллиона вольт.

Изобретение Теслы не просто работает, а работает очень зрелищно. Включив трансформатор, можно наблюдать эффектные разряды (молнии), длина которых достигает нескольких метров.

Из чего состоит катушка Тесла

Прежде чем собирать катушку Тесла, рассмотрим ее составляющие и форму.


Тороидальные фигуры: что это?

Катушка Тесла выполняется в форме Тора (тороидальной фигуры, тороида).

Тороидальные фигуры в первую очередь понятие из геометрии. Тор - поверхность, полученная путем вращения образующей окружности вокруг оси, лежащей в плоскости этой окружности.

Лучше один раз взглянуть, чем пытаться себе представить. На рисунке ниже - тороидальные поверхности.


Тороид является важной составляющей катушки Тесла и изготавливается, как правило, из алюминиевой гофры. В составе этого устройства он выполняет следующие функции:

  • уменьшает резонансную частоту;
  • аккумулирует энергию перед образованием стримера;
  • создает электростатическое поле, отталкивающее стример от вторичной обмотки трансформатора.

Кстати, о том, что такое стример, можно прочитать в нашей отдельной статье, посвященной молниям.

Нельзя не обратить внимение на забавную игру слов. В скандинавской мифологии Тор - бог грома и молний. Составляющая катушки Тесла, благодаря которой образуется разряд (молния) - Тор, или тороид.

Вторичная обмотка

Вторичная обмотка - основная составляющая катушки Тесла, которую также называют просто "вторичка". Обмотка, как правило, содержит около 800-1200 витков, а мотают ее на трубах ПВХ, которые можно купить в обычном строительном магазине.

Исходя из необходимого количества витков выбирается диаметр провода обмотки. Стандартное отношение длины вторичной обмотки катушки к ее диаметру - 4:1 или 5:1. Для того, чтобы витки не расползались, их покрывают лаком.

Первичная обмотка и защитное кольцо

Первичная обмотка (или первичка) катушки Тесла должна иметь низкое сопротивление, так как по ней будет проходить большой ток. Обычно ее изготавливают из проводов сечением более, чем 6 миллиметров. Также в качестве первичной обмотки часто используют медную трубу для кондиционеров.

Форма первичной обмотки - цилиндрическая, плоская или коническая.

Защитное кольцо - незамкнутый плоский виток заземленного медного провода. Кольцо устанавливается для того, чтобы стример из тороида, попав в первичную обмотку, не вывел из строя электронику.

Понятие эфира и идеи Теслы

Теперь мы знаем, из чего состоит катушка Тесла. Но какова история этого изобретения? Чтобы ответить на этот вопрос, стоит разобраться с тем, что же такое эфир.

Эфир – это физическая среда, гипотетическое вещество или поле, которое заполняет пространство Вселенной. Эфир отвечает за распространение электромагнитного и гравитационного взаимодействия.

В настоящий момент теория эфира не используется в современной физике, так как после появления теории относительности необходимость в понятии "эфир" просто отпала.

Тем не менее, появляются новые взгляды на концепцию эфира, и полностью списывать ее со счетов не стоит. Многие ученые до сих пор ведут споры о том, существует эфир, или нет, а в физике даже появился новый раздел, изучающий этот вопрос (эфиродинамика).

Никола Тесла своими опытами доказывал существование эфира. У ученого была идея использовать эфир как источник энергии. Так, Тесла хотел отказаться от проводной передачи энергии и передавать электричество по всему миру без проводов посредством эфира. Для этого предполагалось на полюсах Земли установить две гигантские катушки.

К сожалению, выбранное Теслой направление не разрабатывалось на более глубоком уровне. Вдобавок его считали странным ученым, который так и не захотел выйти на путь поиска экономических выгод своих исследований. Кроме этого наступала другая эра – время вакуумных изобретений.

Многие архивы Теслы были утеряны при загадочных обстоятельствах. Даже если Тесла и узнал, как получить практически неиссякаемый источник энергии, то сейчас эта информация недоступна. Редкий гений Теслы опередил свое время, а мир оказался просто не готов к его идеям.

Конфигурации катушки Тесла


Трансформатор Тесла имеет много видоизменений, в зависимости от этого используется в разных сферах жизни:

  1. Катушка с роторным механизмом с искрами, вращающимися в разных положениях. Здесь роль двигателя выполняет электрический агрегат с вращающимся диском, проводящим электроды.
  2. Ламповая катушка с обычными лампами для генерации тока высокого напряжения. Они способны проводить напряжение до 600 Вольт.
  3. Полупроводниковый генератор с задающим генератором высокой частоты (более современная конструкция).
  4. Высокочастотный трансформатор, выводящих ток посредством музыкальных волн. Разряд изменяется в зависимости от музыкального ритма.

Достаточно изменить ключ разряда, чтобы изменить его вид и достигнуть тем самым разных форм разряда.

Основное отличие их всех – довольно тихая работа, так как сама искра издает мало шума.


В чем уникальность катушки Тесла?

Основное отличие этого изобретения состоит в том, что у его изобретателя получалось при частоте в несколько сот килогерц получить напряжение, превышающее 15 млн вольт. Это устройство смотрится невероятно странно, пугающе, но и в той же мере красиво: отсутствие железного сердечника, толстый наружный слой первичной обмотки и толстый внутренний слой вторичной обмотки. Но есть и недостатки. Например, изготовить большой виток, обеспечивая отличный тепловой контакт с сердечником трансформатора, довольно непросто.

Кстати , если вдруг вам нужно написать любую работу по физике, у нас действуют вкусные скидки

Многие пытаются повторить многочисленные уникальнейшие эксперименты великого гения. Однако для этого им придется решить важнейшую задачу – как сделать катушку Теслы в домашних условиях. Но как это сделать? Попробуем подробно описать так, чтобы у вас это получилось с первого раза.

Как сделать катушку Тесла в домашних условиях своими руками


В интернете можно найти массу информации о том, как сделать музыкальную или мини катушку Тесла своими руками. Но мы расскажем и наглядно покажем на примере иллюстраций, как сделать простую катушку Тесла на 220 Вольт в домашних условиях.

Так как это изобретение было создано Николой Тесла для экспериментов с высоковольтными зарядами, в нем присутствуют следующие элементы: источник питания, конденсатор, 2 катушки (именно между ними будет циркулировать заряд), 2 электрода (между ними заряд будет проскакивать).

Катушка Тесла применяется в множестве устройств: от телевидения и ускорителя частиц до игрушек для детей

Для начала работ вам понадобятся следующие детали:

  • блок питания от неоновых вывесок (питающий трансформатор);
  • несколько керамических конденсаторов;
  • металлические болты;
  • фен (если нет фена, можно использовать вентилятор);
  • медный провод, покрытый лаком;
  • металлический шар или кольцо;
  • тороидальные формы для катушек (можно заменить цилиндрическими);
  • предохраняющая штанга;
  • дроссели;
  • штырь для заземления.

Создание должно происходить по следующим этапам.

Проектирование


Для начала стоит определиться с тем, каких размеров должна быть катушка и где она будет располагаться.

Если финансы позволяют, вы можете создать в домашних условиях просто огромнейший генератор. Но вам стоит помнить об одной важной детали: катушка создает множество искровых разрядов, которые сильно разогревают воздух, заставляя его расширяться. В результате образуется гром. В итоге созданное электромагнитное поле в состоянии вывести из строя все электроприборы. Поэтому лучше создавать ее не в квартире, а где-то в более укромном и удаленном уголке (гараж, мастерская и пр.).

Если хотите заранее определить, насколько длинная дуга получится у вашей катушки или силу мощности необходимого блока питания, произведите следующие замеры: расстояние между электродами в сантиметрах разделите на 4,25, полученное число возведите в квадрат. Итоговое число и будет ваша мощность в Ваттах. И наоборот – чтобы выяснить расстояние между электродами, квадратный корень мощности необходимо умножить на 4,25. Для катушки Тесла, которая будет в состоянии сотворить дугу длиной в полтора метра, потребуется 1 246 Вт. А прибор с блоком питания на один киловатт сможет сделать искру длиной в 1,37 метра.

Далее изучаем терминологию. Для создания столь необычного прибора нужно будет разбираться в узкоспециализированных научных терминах и единицах измерения. И чтобы не оплошать и все сделать верно, придется научиться понимать их смысл и значение. Вот некоторая информация, которая поможет:

  1. Что такое электрическая емкость? Это способность накапливать и удерживать электрический заряд определенного напряжения. То, что накапливает электрический заряд, называется конденсатором. Фарад – это единица измерения электрических зарядов (Ф). Он может быть выражен через 1 ампер секунду (Кулон), помноженную на вольт. Обычно емкость измеряют в миллионных и триллионных долях фарада (микро- и пикофарадах).
  2. Что такое самоиндукция?Так называют явление возникновения ЭДС в проводнике при изменении проходящего через него тока. У высоковольтных проводов, по которым течет низкоамперный ток, высокая самоиндукция. Ее единица измерения – генри (Гн), который соответствует цепи, где при изменении тока со скоростью один ампер в секунду создается ЭДС 1 Вольт. Обычно индуктивность измеряется в мили- и микрогенри (тысячной и миллионной части).
  3. Что такое резонансная частота? Так называют частоту, на которой потери на передачу энергии будут минимальными. В катушке Тесла это будет частота минимальных потерь при передаче энергии между первичной и вторичной обмотками. Ее единица измерения – герц (Гц), то есть один цикл в секунду. Обычно резонансная частота измеряется в тысячах Герцах или килогерцах (кГц).

Сбор необходимых деталей


Выше мы уже писали, какие составляющие вам понадобятся для создания катушки Тесла в домашних условиях. И если вы радиолюбитель, у вас непременно найдется что-нибудь из этого (а то и все).

А вот некоторые особенности необходимых деталей:

  • источник питания должен питать через дроссель накопительный или первичный колебательный контур, состоящий из первичной катушки, первичного конденсатора и разрядника;
  • первичная катушка должна быть расположена около вторичной катушки, являющейся элементом вторичного колебательного контура, но при этом контуры не должны соединяться проводами. Стоит вторичному конденсатору накопить достаточный заряд, как он тут же начнет высвобождать в воздух электрические заряды.

Создание катушки Тесла

  1. Выбираем трансформатор. Именно питающий трансформатор будет решать, какого размера будет ваша катушка. Большая часть таких катушек работает от трансформаторов, способных выдавать ток от 30 до 100 миллиампер при напряжении от пяти до пятнадцати тысяч вольт. Найти нужный трансформатор можно на ближайшем радиорынке, в интернете или же снять с неоновой вывески.
  2. Делаем первичный конденсатор. Его можно собрать из нескольких более мелких конденсаторов, соединив их в цепи. Тогда они смогут накапливать равные доли заряда в первичном контуре. Правда, нужно, чтобы все мелкие конденсаторы имели одинаковую емкость. Каждый из таких мелких конденсаторов будет называться составным.

Приобрести конденсатор небольшой емкости можно на радиорынке, в интернете или же снять со старого телевизора керамические конденсаторы. Впрочем, если у вас золотые руки, можете и самостоятельно сделать их из алюминиевой фольги с помощью полиэтиленовой пленки.

Для достижения максимальной мощности необходимо, чтобы первичный конденсатор полностью заряжался каждые пол цикла подачи энергии. Для источника питания в 60 Гц нужно, чтобы заряд происходил 120 раз в секунду.

  1. Проектируем разрядник. Чтобы сделать одиночный разрядник, используйте минимум шестимиллиметровый (в толщину) провод. Тогда электроды смогут выдерживать тепло, которое выделяется во время заряда. Кроме того можно сделать многоэлектродный или роторный разрядник, а также осуществлять охлаждение электродов путем воздушного обдува. Для этих целей прекрасно подойдет старый домашний пылесос.
  2. Делаем обмотку первичной катушки. Саму катушку делаем из проволоки, но понадобится форма, вокруг которой придется делать намотку проволоки. Для этих целей используется медная лакированная проволока, купить которую можно в магазине радиоэлектроники или просто снять с любого старого ненужного электроприбора. Форма, вокруг которой будем наматывать проволоку, должна быть конической или цилиндрической формы (пластиковая или картонная трубка, старый абажур и т.д.). Благодаря длине проволоки можно регулировать индуктивность первичной катушки. Последняя должна иметь низкую индуктивность, поэтому в ней должно быть небольшое количество витков. Проволока для первичной катушки не обязательно должна быть сплошной – можно скрепить несколько, чтобы по ходу сборки регулировать индуктивность.
  3. Собираем в одну цепь первичный конденсатор, разрядник и первичную катушку. Данная цепь будет образовывать первичный колебательный контур.
  4. Делаем вторичную катушку индуктивности. Здесь нам также понадобится цилиндрическая форма, куда нужно наматывать проволоку. У этой катушки должна быть та же резонансная частота, что и у первичной, иначе не избежать потерь. Вторичная катушка должна быть выше первичной, потому что у нее будет больше индуктивность и она будет препятствовать разряду вторичного контура (именно он может привести к сгоранию первичной катушки). При нехватке материалов для создания большой вторичной катушки можно сделать разрядный электрод. Это защитит первичный контур, но заставит этот электрод принимать на себя большинство разрядов, в результате чего разряды не будут видны.
  5. Создаем вторичный конденсатор, или терминал. Он должен иметь скругленную форму. Обычно это тор (бубликообразное кольцо) или сфера.
  6. Соединяем вторичный конденсатор и вторичную катушку. Это и будет вторичный колебательный контур, который должен быть заземлен подальше от домашней проводки, которая питает источник катушки Тесла. Для чего это нужно? Так получится избежать блуждания высоковольтных токов по проводке дома и последующего вреда любым подключенным электроприборам. Для отдельного заземления достаточно будет просто вогнать в землю металлический штырь.
  7. Делаем импульсные дроссели. Сделать такую небольшую катушку, способную предотвратить поломку источника питания разрядником, можно, если намотать вокруг тонкой трубки медную проволоку.
  8. Собираем все детали в единое целое. Первичный и вторичный колебательные контуры размещаем рядом, через дроссели присоединяем к первичному контуру питающий трансформатор. Вот и все! Чтобы воспользоваться катушкой Тесла по назначению, достаточно включить трансформатор!

Если у первичной катушки слишком большой диаметр, можно разместить вторичную катушку внутри первичной.

В 1997 году я заинтересовался катушкой Тесла и решил построить свою. К сожалению, я потерял интерес к ней, прежде чем я смог её запустить. Через несколько лет я нашел свою старую катушку, немного пересчитал её и продолжил строительство. И снова я забросил ее. В 2007 году друг показал мне свою катушку, напомнив мне о моих незавершенных проектах. Я опять нашел свою старую катушку, пересчитал все и в этот раз завершил проект.

Схема катушки Тесла

Катушка Тесла - это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.

Высоковольтный трансформатор используется для зарядки конденсатора.

Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.

Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.

Этапы строительства

Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

Вот основные шаги, с которых следует начать:

  1. Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
  2. Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
  3. Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
  4. Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
  5. Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
  6. Соедините все компоненты, настройте катушку, и все готово!

Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!

Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь - пока.

Детали

Катушка делалась в основном из тех деталей, которые были в наличии.
Это были:
4кВ 35mA трансформатор от неоновой вывески.
0.3мм медная проволока.
0.33mF 275V конденсаторы.
Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.

Вторичная обмотка

Обмотка


Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя

Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.

Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
L = [(2pf) 2 C] -1

При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.

Металлическая сфера или тороид

Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.

Первичная обмотка

Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
L = [(2pf) 2 C] -1
С - емкость конденсаторов, F-резонансная частота вторичной обмотки.

Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.

Конденсаторы

Обмотка


Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом

Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
C = I / (2pfU)

Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.

Схема сборки конденсаторов

Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.

Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.

Сгоревшие конденсаторы

Разрядник

Трансформатор, разрядник и конденсаторы

Мой разрядник это просто два винта с металлическим шариком в середине.
Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.

Характеристики

Колебательный контур
Трансформатор NST 4кВ 35мА
Конденсатор 3 x 24 275VAC 0.33mF
Разрядник: два шурупа и металлический шар

Первичная обмотка
Внутренний диаметр 17см
Диаметр трубки обмотки 6 мм
Расстояние между витками 3 мм
Длина трубки первичной обмотки 5м
Витки 6

Вторичная обмотка
Диаметр 7,5 см
Высота 37 см
Проволока 0.3мм
Длина провода около 209m
Витки: около 900

Список радиодеталей для сборки Катушки Тесла:

  • Провод эмалированный ПЭТВ-2 диаметр 0,2 мм
  • Провод медный в полихлорвиниловой изоляции диаметр 2,2 мм
  • Туба от силиконового герметика
  • Фольгированный текстолит 200х110 мм
  • Резисторы 2,2К, 500R
  • Конденсатор 1mF
  • Светодиоды 3-х вольтовые 2 шт
  • Радиатор 100х60х10 мм
  • Регулятор напряжения L7812CV или КР142ЕН8Б
  • Вентилятор 12 вольтовый от компьютера
  • Коннектор Banana 2 шт
  • Труба медная диаметр 8 мм 130 см
  • Транзистор MJE13006, 13007, 13008, 13009 из советских КТ805, КТ819 и аналогичные

Катушка Тесла состоит из двух обмоток. Первичная обмотка L1 содержит 2,5 витка медного провода в полихлорвиниловой изоляции диаметром 2,2 мм. Вторичная обмотка L2 содержит 350 витков в лаковой изоляции диаметром 0,2 мм.

Схема катушки Тесла или качера Бровина на одном транзисторе

Схема катушки Тесла или качера Бровина на одном транзисторе

Каркасом для вторичной обмотки L2 служит туба от силиконового герметика. Предварительно удалив остатки герметика, отрежьте часть тубы длиною 110 мм. Отступив по 20 мм от нижней и верхней части, намотайте 350 витков медного провода диаметром 0,2 мм. Провод можно добыть из первичной обмотки любого старого малогабаритного трансформатора на 220В, например, от китайского радиоприемника. Катушка мотается в один слой виток к витку, как можно плотнее. Концы провода следует пропустить во внутрь каркаса через предварительно просверленные отверстия. Готовую катушку для надежности покройте пару раз нитролаком. В поршень вставьте остро заточенный металлический стержень, подпаяйте к нему верхний вывод обмотки и закрепите термоклеем. После чего вставьте поршень в каркас катушки. От носика отрежьте колечко с резьбой, получится гайка, с помощью которой вы легко закрепите катушку на текстолитовой плате, накрутив получившуюся гайку на резьбу выходного отверстия тубы. В дне каркаса просверлите отверстие для светодиода и второго вывода обмотки.

Катушка Тесла из тубы от силиконового герметика

В своей катушке я использовал транзистор MJE13009. Также подойдут Транзисторы MJE13006, 13007, 13008, 13009 из советских КТ805, КТ819 и другие аналогичные. Транзистор обязательно разместите на радиаторе, в процессе работы он будет очень сильно греться и по этому предлагаю установить вентилятор и немного усовершенствовать схему.

Поскольку, для питания катушки требуется напряжение более 12 вольт. Максимальную мощность катушка Тесла развивает при напряжении питания в 30 вольт. А так, как вентилятор рассчитан на 12 вольт, то в схему следует добавить регулятор напряжения L7812CV или советский аналог КР142ЕН8Б. Ну, а чтобы катушка выглядела более современной и привлекала внимание, добавим пару светодиодов синего цвета. Один светодиод подсвечивает катушку изнутри, а второй подсвечивает катушку снизу. Схема будет выглядеть так.

Схема катушки Тесла или качера Бровина с подсветкой и охлаждением

Все компоненты катушки Тесла разместите на печатной плате. Если вы не хотите изготавливать печатную плату, просто разместите все детали катушки Тесла на кусочке МДФ или рифленого картона от бумажной коробки и соедините между собой методом навесного монтажа.

Печатная плата катушки Тесла или качера Бровина с подсветкой и охлаждением

Печатная плата катушки Тесла или качера Бровина с подсветкой и охлаждением

Готовая печатная плата будет выглядеть так. Один светодиод припаивается в центре, он подсвечивает пространство под печатной платой. Ножки сделайте из четырех глухих гаек, накрученных на винты.

Печатная плата для катушки Тесла или качера Бровина. Вид снизу.

Второй светодиод припаивается под катушкой, он будет подсвечивать ее изнутри.

Печатная плата для катушки Тесла или качера Бровина. Вид сверху.

Транзистор и регулятор напряжения обязательно намажьте термопастой и разместите на радиаторе размером 100х60х10 мм. Регулятор напряжения следует изолировать от радиатора с помощью теплопроводящих прокладок и изоляционных шайб.

Радиатор для катушки Тесла или качера Бровина

Катушку вставьте в отверстие и затяните с обратной стороны пластиковой гайкой.

Катушку вставьте в отверстие и затяните с обратной стороны пластиковой гайкой

Первичную обмотку следует мотать в том же направлении, что и вторичную. То есть, если катушку L2 наматывали по часовой стрелке, значит катушку L1 тоже надо мотать по часовой стрелке. Частота катушки L1 должна совпадать с частотой катушки L2. Чтобы добиться резонанса, катушку L1 надо немного настроить. Делаем так, на каркасе диаметром 80 мм наматываем 5 витков оголенного медного провода диаметром 2,2 мм. К нижнему выводу катушки L1 припаиваем гибкий провод, к верхнему выводу прикручиваем гибкий провод, так чтобы его можно было перемещать.

Включаем питание, подносим неоновую лампу к катушке. Если она не светится, значит надо поменять местами выводы катушки L1. Далее опытным путем подбираем положение катушки L1 по вертикали и количество витков. Перемещаем провод прикрученный к верхнему выводу катушки вниз, добиваемся максимального расстояния на котором будет зажигаться неоновая лампа, это будет оптимальный радиус действия катушки Тесла. В итоге у вас должно получиться, как у меня 2,5 витка. После экспериментов изготавливаем катушку L1 из провода в полихлорвиниловой изоляции и припаиваем на место.

Катушка Тесла или качер Бровина

Наслаждаемся результатами своих трудов… После включения питания, появляется стример длиною 15 мм, неоновая лампочка начинает светиться в руках.

Катушка Тесла или качер Бровина. Стример 15 мм и неоновая лампочка.

Так, снимали сагу Звездные войны… Вот он, секрет меча Джидая…

Катушка Тесла или качер Бровина. Свечение трубчатой люминесцентной лампы на 220 вольт.

В автомобильной лампе появляется небольшая плазма исходящая от нити накаливания к стеклянной колбе лампы.

Катушка Тесла или качер Бровина. Плазма в автомобильной 12 вольтовой лампе.

Чтобы значительно увеличить мощность катушки Тесла рекомендую изготовить торроид из медной трубки диаметром 8 мм. Диаметр кольца 130 мм. В качестве торроида можно использовать аллюминиевую фольгу скомканную в шарик, металлическую баночку, радиатор от компьютера и другие не нужные, объемные предметы.

Торроид значительно увеличивает мощность катушки Тесла или качера Бровина

После установки торроида мощность катушки значительно увеличилась. Из медной проволоки находящейся рядом с торроидом, появляется стример длиною 15 мм.

Катушка Тесла или качер Бровина. Из медной в проволоки находящейся рядом с торроидом появляется стример длиною 15 мм

Теперь катушка Тесла может зажигать большие люминесцентные лампы на 220 вольт.

Теперь катушка Тесла может зажигать большие люминесцентные лампы на 220 вольт

И даже светодиодные…

Катушка Тесла или качер Бровина. Свечение светодиодной лампы на 220 вольт.

А это плазма возникающая в автомобильной лампочке при нахождении рядом с торроидом.

Катушка Тесла или качер Бровина. Мощная плазма в автомобильной 12 вольтовой лампочке.

Делать торроид или нет, решать вам. Я всего лишь показал и рассказал вам о том, как я сделал катушку Тесла или качер Бровина на одном транзисторе, своими руками и о том, что у меня получилось. Моя катушка производит ток высокого напряжения высокой частоты, согласно законам физики. Спасибо Николе Тесла и Владимиру Ильичу Бровину за огромный вклад в науку!

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как работает катушка Тесла!

Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и "вечные двигатели" в каждый дом!

В ней, кроме всего прочего, очень подробно изложены взгляды ученого на возможность использования энергии окружающей среды, а именно – атмосферного электричества. Вот фрагмент, заслуживающий внимания:

«Электричество, образующееся естественным путем, является еще одним источником энергии, который может стать доступным. В разрядах молнии содержится огромное количество электрической энергии, которую мы могли бы использовать путем ее преобразования и аккумуляции. Несколько лет тому назад я опубликовал описание метода преобразования электричества, который представляет первую часть задачи по аккумулированию энергии разряда молнии, хотя осуществить это будет трудно. Кроме того, известно, что электрические токи постоянно циркулируют сквозь землю, и между землей и каким-либо воздушным слоем существует разность электрических напряжений, которая изменяется пропорционально высоте.


В ходе недавних экспериментов я, в этой связи, открыл два новых важных явления. Одно из них состоит в том, что в проводе, один конец которого заземлен, а другой уходит высоко вверх, возникает ток, что происходит либо благодаря вращению Земли вокруг своей оси, либо благодаря ее поступательному движению. Однако еще нет уверенности в том, что ток станет постоянно проходить по проводу до тех пор, пока электричеству не будет создана возможность просачиваться в воздух. Его истекание в большой степени облегчится, если поднятый конец провода подсоединить к терминалу с большой поверхностью и множеством острых граней и шипов. Так мы сможем получать постоянный приток электрической энергии, просто удерживая провод на высоте, но, к сожалению, количество электричества, которое может быть получено таким способом, мало.

Говоря о первой части задачи, Тесла, вероятно, имеет в виду метод, подробно описанный в патенте № 462418, полученном 3 ноября 1891 года (почти за 9 лет до публикации статьи).


В патенте описывается метод аккумулирования энергии источника в конденсаторе, который, затем, разряжается в рабочую цепь, содержащую преобразовательные устройства, которыми могут быть лампы, трансформаторы и т.п.

Работая над преобразователями высокой частоты, начиная с 1891 года, ученый разрабатывает множество видов преобразователей, а также тех или иных компонентов устройств.

clip_image008
clip_image010

24 февраля 1893 года, читая лекцию сотрудникам Института Франклина в Филадельфии, Тесла затрагивает следующий важный аспект:

clip_image012

Эта катушка отличалась тем, что намотана двумя параллельными проводами, которые соединены последовательно так, что конец одного провода соединялся с началом второго. Это делалось для того, чтобы увеличить разность потенциалов между двумя соседними витками. Как известно, работающая на резонансной частоте катушка (с собственной межвитковой емкостью), может накапливать энергию пропорционально квадрату напряжения между двумя соседними витками.

Поэтому такая катушка во много раз превосходит катушку с однопроводной намоткой. Поясним этот момент: пусть катушка имеет 500 витков в один слой, при этом напряжение на ее концах 500 вольт, значит разность потенциалов между двумя соседними витками 1 вольт. Теперь рассмотрим намотку в два провода, когда 500 витков получены соединением двух катушек из 250 витков каждая, по схеме из патента. Разность теперь не 1 вольт, а 250 вольт. Значит такая катушка может запасать в 62500 раз больше энергии ( 250 2 /1 2 = 62500).

Вероятно, Тесла использовал такие катушки в качестве дросселей (накопительных катушек). В патенте 568176 от 22 сентября 1896 года упоминается возможность обойтись без конденсатора, если сама первичная цепь обладает достаточной емкостью:

Рисунок из патента №568176

22 сентября 1896 года Тесла получает сразу пять патентов, которые описывают устройства, работающие примерно по аналогичному принципу, их разрядная первичная цепь везде одинакова:

Из патента №568178:

16 августа 1898 года Тесла получает семь патентов на различные контроллеры электрической цепи, задача которых – эффективная коммутация зарядной и разрядной цепей. Главная цель, которую преследовал ученый при совершенствованиях – снизить потери при размыкании и замыкании прерывателя, а также повысить, насколько это возможно, скорость коммутации и частоту.

clip_image016

Рисунок из патента №609245

Это следующие патенты:

Как видим, Тесла все же смог разработать контроллеры, дающие возможность получать очень высокую частоту прерываний.

В период с 1899 по 1900 годы он использует все свои практические наработки в лаборатории в Колорадо-Спрингс, где и проверяет на практике свои идеи. Рабочий дневник ученого содержит подробное описание проделанной работы.

Стандартная схема передатчика выглядит так:

clip_image018

Когда выключатель замкнут, зарядная катушка накапливает энергию, затем происходит размыкание, энергия, накопленная в катушке принимает форму высоковольтного импульса и устремляется в конденсатор, заряжая его, после этого вновь происходит замыкание, тогда энергия, накопленная в конденсаторе начинает совершать высокочастотные колебания в цепи разряда в то время, как зарядная катушка вновь накапливает энергию от источника. Вторичная обмотка, настроенная в резонанс, находится в несильной индуктивной связи с первичной обмоткой, чтобы свободные колебания могли проявиться с максимальной силой.

Это патент №1119732 от 1 декабря 1914 года.

Рисунок из патента №1119732

Из патента №1119732:

Становится ясно, что здесь воплощена идея Тесла, высказанная им во время выступления 24 февраля 1893 года о том, как необходимо взаимодействовать с электрическим зарядом Земли, а также способ правильной настройки, соответствующий идее. Отметим, что в патенте №787412, заявка на получение которого была подана 16 мая 1900 года, подробно описан принцип правильной настройки такой системы. Основы также описаны и в патенте №649621 от 15 мая 1900 года.

clip_image022

Рисунок из патента №685957

При исследование устройств и патентов Николы Тесла, Вам в работе наверняка может понадобиться оборудование Hach Lange. Например различные колориметры, спектрофотометры и много другого качественного измерительного оборудования.

Читайте также: