Тестер для материнских плат своими руками

Добавил пользователь Владимир З.
Обновлено: 10.09.2024

Вначале статьи сразу сделаю оговорку. Статья не для профи, а для начинающих мастеров-компьютерщиков и для тех, кто самостоятельно хочет найти причины неисправности в компьютерном оборудовании, но при этом не обладает широкими познаниями в области электрики, электроники. Информация исключительно для любительских экспериментов.

Одним из пунктов перечня мер, производимых при профилактике системных блоков ПК и ноутбуков, является визуальная и тактильная диагностика (на предмет вздутых конденсаторов и сильно греющихся элементов компьютера). В этой статье читателю предлагается несколько простейших способов приборной диагностики с использованием электронного мультиметра.

Теория: мультиметр, устройство, техника безопасности.

Мультиметр — универсальный многоцелевой прибор для производства различных измерений и замера величин тока в электрических цепях. Данный прибор в его классическом исполнении позволяет измерять: напряжение в электрических цепях и элементах питания, силу тока, сопротивление проводников, диагностировать различные радио-элементы (транзисторы, резисторы, конденсаторы, диоды). Более профессиональные модели позволяют измерять ёмкость конденсаторов, измерять температуру различных поверхностей, генерировать электрические импульсы.

Далее в статье пойдет речь о самом простейшем мультиметре типа М-83 (DT-832), который можно приобрести в любом хозяйственном магазине, радиорынке или в магазинах инструмента (иногда и в строительных). Это самый популярный тип мультиметров, поскольку он имеет самые необходимые функции, прост в использовании и недорого стоит.

Описание устройства

Мультиметр М-83 (DT-832) — это компактный (карманный) электронный прибор, размером примерно 12х6 см с двумя щупами (измерительными контактами).

Чтобы включить прибор, достаточно повернуть переключатель, расположенный по центру прибора в одно из положений, разделённых по назначению на сектора (приведём описание самых нужных):

шкала мультиметра - Использование мультиметра при диагностике ПК

Для подключения щупов имеется три гнезда:

гнёзда мультиметра - Использование мультиметра при диагностике ПК

Техника безопасности

Диагностика ПК с помощью мультиметра

Предлагаю три несложных, доступных и абсолютно безопасных для электроники способа проверки отдельных узлов и элементов компьютера:

  • подключите чёрный щуп в гнездо COM, красный — в гнездо VOmA
  • установите переключатель прибора в положение O=200
  • присоедините любой из щупов к любому из контактов кабеля
  • коснитесь вторым щупом симметрично расположенного контакта на другом конце кабеля
  • при наличии контакта на концах проводника (при отсутствии обрыва) на дисплее начнут хаотично меняться показания прибора — значит всё в порядке, проводник не повреждён
  • подключите чёрный щуп в гнездо COM, красный — в гнездо VOmA
  • установите переключатель прибора в положение значка звука (диода)
  • присоедините любой из щупов к любому из контактов кабеля
  • коснитесь вторым щупом симметрично расположенного контакта на другом конце кабеля
  • при наличии контакта на концах проводника (при отсутствии обрыва) прозвучит звуковой сигнал — значит всё в порядке, проводник не повреждён

Замер напряжения

Чтобы проверить напряжение на разъёме питания процессора (4pin), Molex или SATA достаточно извлечь проверяемый разъём из устройства и включить компьютер. Чёрным щупом касаемся (или вставляем) контакта любого чёрного проводника, красным щупом проверяем напряжение на контактах цветных проводников.

DSC00696 e1500625043162 - Использование мультиметра при диагностике ПК

Измерение выходного напряжения на разъёме Molex блока питания компьютера.

Запомните простое правило: жёлтый — 12V, красный — 5V, оранжевый — 3.3V. Сверяйте измеряемые значения со схемой, в случае расхождения более 10% возможно потребуется замена или ремонт блока питания. Чтобы проверить разъём питания материнской платы (20pin или 24pin) необходимо извлечь его из платы и замкнуть зелёный проводник с соседним чёрным для имитации включения компьютера (например, половинкой скрепки или кусочком провода с оголёнными концами), этим же способом можно проверить блок питания, не подключённый к каким-либо устройствам.

  • Напряжение на контактах материнской платы. Способ идентичен замеру напряжения батарейки CMOS. На материнской плате расположены контакты в виде штырьков для подачи питания на вентиляторы, встроенный динамик, индикаторы и другие вспомогательные устройства. На самой плате подписано, какой из контактов является положительным, касаемся его красным щупом, а чёрным щупом касаемся любого соседнего контакта. На 2pin, как правило, покажет 5V, на 3pin и 4pin покажет 5V на крайнем контакте и 12V на средних.
  • Напряжение в общей электросети. Данный замер полезно сделать, если есть сомнения в работоспособности сетевого фильтра либо для проверки напряжения в розетке. иногда сбои в работе компьютера возникают по причине сбоев в электроснабжении либо вовсе в отсутствии тока в сети. Для данного измерения необходимо щупы мультиметра оставить в исходном положении (чёрный — COM, красный — VOmA), а переключатель перевести в положение ACV=750. Затем просто вставляем щупы в розетку на стене или в сетевой фильтр (полярность значения не имеет) и наблюдаем значение на дисплее. Как правило, оно никогда не бывает ровно 220V. Возможны отклонения от номинала +/-20V (10%).

Проверка конденсатора

Устройство для ремонта и тестирования персональных компьютеров (ПК) POST Card PCI применяется для диагностики неисправностей при ремонте и модернизации компьютеров, а также периферийных систем. Оно найдет широкое применение в любых электронных системах, работающих на основе компьютеров типа IBM PC (или совместимых с ними).

Общие сведения

POST Card PCI (рис. 1) представляет собой плату расширения ПК, которая может быть установлена в любой свободный PCI-слот (33 МГц) и предназначена для отображения POST-кодов, генерируемых системой BIOS ПК, в удобном для пользователя виде.

Рис. 1. Внешний вид устройства

Благодаря применению ПЛИС (программируемая логическая интегральная схема) фирмы Altera стало возможным создание простого и доступного для повторения радиолюбителями устройства.

Кроме того, устройство можно использовать как тестер микросхем. Для этого в нем предусмотрена 44-выводная панель для микросхемы.

Устройство POST Card PCI имеет следующие технические характеристики:

  • Напряжение питания, В +5
  • Ток потребления, мА Принцип работы

При каждом включении питания ПК, совместимого с IBM PC, и до начала загрузки операционной системы процессор компьютера выполняет процедуру BIOS под названием "Самотест по включению питания" - POST (Power On Self Test). Эта же процедура выполняется также при нажатии на кнопку RESET или при программной перезагрузке компьютера. В некоторых особых случаях с целью сокращения времени загрузки ПК процедура POST может быть несколько урезана по времени, например, в режиме "Quick Boot" или при выходе из режима "сна" (Hibernate).

Основной целью процедуры POST является проверка базовых функций и подсистем ПК (память, процессор, материнская плата, видеоконтроллер, клавиатура, гибкий и жесткий диски) перед загрузкой операционной системы. Это застраховывает пользователя от попытки работать на неисправной системе, что могло бы привести, например, к разрушению пользовательских данных на жестком диске. Перед началом каждого из тестов процедура POST генерирует POST-код, который выводится по определенному адресу в пространстве адресов устройств ввода/вывода ПК. В случае обнаружения неисправности в тестируемом устройстве процедура POST просто "зависает", а предварительно выведенный POST-код однозначно определяет, на каком из тестов произошло "зависание". Таким образом, глубина и точность диагностики при помощи POST-кодов полностью определяются глубиной и точностью тестов соответствующей процедуры POST-системы BIOS компьютера.

Некоторые коды неисправностей BIOS

В таблице приведены некоторые коды AMI BIOS, отражающие наиболее часто встречающиеся неисправности ПК.

Ошибка конфигурации системной памяти (фатальная ошибка)

Ошибка конфигурации системной памяти (звуковой сигнал)

Ранняя инициализация контроллера клавиатуры

Ошибка инициализации VGA BIOS

Ошибка теста видеопамяти адаптера CGA

Ошибка теста схем формирования разверток адаптера CGA

Ошибка видеопамяти или схем формирования разверток

Отключение IRQ12, если PS/2 mouse отсутствует

Определение типа памяти, суммарного объем и размещение по строкам

В случае если обнаружена ошибка конфигурации системной памяти (коды DE или DF), в порт 80h выводится последовательно в бесконечном цикле код DE, код DF, код ошибки конфигурации, который может принимать следующие значения:

• 00 - оперативная память не обнаружена;

• 01 - установлены модули DIMM различных типов (пример, EDO и SDRAM);

• 02 - чтение содержимого SPD закончилась неудачей;

• 03 - модуль не соответствует требованиям для работы на заданной частоте;

• 04 - модуль не может быть использован в данной системе;

• 05 - информация в SPD не позволяет использовать установленные модули;

• 06 - обнаружена ошибка в младшей странице памяти.

Практический поиск неисправностей с использованием тестера POST Card

Прежде всего, при включении питания перед началом работы процедуры POST должен произойти сброс системы сигналом RST (RESET), что индицируется на POST Card кратковременным миганием левой точки на индикаторе. Рассмотрим несколько наиболее популярных неисправностей ПК и способы их локализации.

POST-коды не отображаются

При неисправности компьютера в самом сложном случае сброс либо совсем не проходит, либо проходит, но никакие POST-коды на индикаторе не отображаются.

Рекомендуется немедленно выключить компьютер и вытащить все дополнительные платы и кабеля, а также память ОЗУ из слотов материнской платы, оставив подключенной к блоку питания только собственно материнскую плату с установленными процессором и POST Card. Если при последующем включении компьютера нормально проходит сброс системы и появляются первые POST-коды, очевидно, проблема заключается во временно извлеченных компонентах компьютера. Возможно, неправильно подключены шлейфы. Вставляя последовательно модули памяти, видеоадаптер, а затем и другие карты, и наблюдая за POST-кодами на индикаторе, обнаруживают неисправный модуль.

Не проходит даже начальный сброс системы (на индикаторе POST Card в самом начале теста кратковременно не загорается левая точка индикатора)

В этом случае либо неисправен блок питания компьютера, либо сама материнская плата (неисправны цепи формирования сигнала RESET). Точную причину можно установить, подсоединив к материнской плате заведомо исправный блок питания.

Сигнал сброса проходит, но никакие POST-коды на индикатор не выводятся (тестируется система, состоящая только из материнской платы, процессора, POST Card и блока питания)

Если материнская плата новая, то причина может быть в неправильно установленных переключателях на материнской плате. Если все переключатели и процессор установлены правильно, а материнская плата не запускается, следует заменить процессор заведомо исправным. Если же это не помогает, то можно сделать вывод о неисправности материнской платы либо ее компонентов (например, причиной неисправности может являться повреждение информация во Flash-BIOS).

Неисправности ПК, определяемые с помощью тестера pOsT Card

После включения питания компьютера (или нажатия на кнопку RESET) и до появления первого POST-кода на индикатор POST Card выводится специальный символ (см. рис 3), который свидетельствует об отсутствии вывода ПК каких-либо POST-кодов. Эта особенность работы данной POST Card облегчает диагностику и позволяет наглядно определить, стартует ли компьютер вообще. Кроме того, этот же символ выводится при программном сбросе PCI-шины для фиксации прохождения сигнала RST. Точки 7-сегментного индикатора POST Card отображают состояния сигналов RST и CLK шины PCI. Зажигание правой точки соответствует наличию активного сигнала синхронизации CLK шины PCI, зажигание левой точки - наличию активного сигнала RST

Рис. 3. Индикация на POST Card об отсутствии вывода ПК каких-либо POST-кодов

При исправном компьютере при включении питания вначале должен произойти сброс системы сигналом RESET (что индицируется на POST Card специальными символами), затем - запуск компьютера с последовательным прохождением всех POST кодов. При неисправности компьютера в самом сложном случае сброс либо совсем не проходит, либо проходит, но никакие другие POST-коды на индикаторе не отображаются.

В этом случае рекомендуется немедленно выключить компьютер, отключить все дополнительные платы и кабели, а также память из материнской платы, оставив подключенной к блоку питания только материнскую плату с установленными процессором и платой POST Card.

Если при последующем включении компьютера нормально проходит сброс системы и появляются первые POST-коды, то проблема заключается во временно извлеченных компонентах компьютера. Возможно неправильно подключены шлейфы (особенно часто вставляют "вверх ногами" шлейф IDE).

Последовательно устанавливают модуль памяти, видеоадаптер, другие карты и, наблюдая за POST-кодами, обнаруживают неисправный модуль.

Например, при неисправной памяти для компьютеров с AMI BIOS последовательность POST-кодов обычно фиксируется на коде d4; с AWARD BIOS - на кодах C1 или С6. Бывает, что при этом неисправен не сам модуль памяти, а материнская плата - причина заключается в плохом контакте в разъемах SIMM/DIMM (согнуты/замкнуты между собой контакты), либо не до конца вставлен модуль в разъем.

При неисправном видеоадаптере для компьютеров с AMI BIOS последовательность POST-кодов фиксируется на кодах 2C, 40 или 2A в зависимости от модификации BIOS либо эти коды отсутствуют, а на мониторе нет соответствующих строк инициализации видеокарты (с указанием типа, объема памяти и фирмы-производителя видеоадаптера).

Аналогично, для компьютеров с AWARD BIOS при неисправности видеоадаптера последовательность POST-кодов либо фиксируется на коде 0d, либо "проскакивает" этот код. Если инициализация памяти и видеоадаптера прошла нормально, устанавливают по одной остальные карты и, подключая шлейфы, на основании показаний индикатора POST Card определяют, какой из компонентов "подсаживает" системную шину, и не дает загрузиться компьютеру.

На рис. 4-6 показана индикация POST Card при возникновении различных ошибок.

Рис. 4. Код ошибки видеопамяти (во время тестирования карта видеопамяти была извлечена из системного блока)

Рис. 5. Код ошибки манипулятора "Мышь" (при тестировании манипулятор был отключен)

Рис. 6. Код ошибки оперативной памяти (при тестировании модуль памяти был удален из материнской платы)

Последовательность действий по реанимации ПК с помощью тестера POST Card PCI

1. Выключают питание неисправного компьютера.

2. Устанавливают POST Card в любой свободный слот материнской платы.

3. Включают питание ПК и считывают с индикатора POST-Card соответствующий POST-код, на котором прерывается ("зависает") загрузка компьютера.

4. По таблицам POST кодов при необходимости определяют, на каком из тестов возникли проблемы и их вероятные причины.

5. При выключенном питании переставляют шлейфы, модули памяти ОЗУ и другие компоненты, имеющие разъемы с целью устранения неисправности.

6. Повторяют пункты 3, 4, 5 для устойчивого прохождения процедуры POST и нормальной загрузки операционной системы.

7. При помощи программных утилит осуществляют окончательное тестирование аппаратных компонентов, а в случае "плавающих" (нестабильных) ошибок - длительный прогон соответствующих программных тестов.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Как сделать простейший тестер для ремонта цифровой техники

Для диагностика неисправности цифровых телевизоров, приставок и тому подобной техники обычно не нужно высокоточных диагностических приборов. В большинстве случаев достаточно логического тестера для определения состояния уровня прозваниваемой цепи. Так как если выходят из строя мосфеты или процессоры они чаще всего переходят в короткозамкнутое состояние, и как реже всего - в обрыв, но не как в усредненное или плавающее состояние.

Понадобится

Изготовление простого тестера из одноразового шприца

Для удобства нахождения в руке был выбран большой шприц на 60 мл.

Как сделать простейший тестер для ремонта цифровой техники

Припаиваем провод к игле и сверлим в корпусе отверстия под сам провод и 3 светодиода.

Как сделать простейший тестер для ремонта цифровой техники

Припаиваем провода к контактам светодиодов и изолируем термоусадкой.

Как сделать простейший тестер для ремонта цифровой техники

Смазываем их клеем и устанавливаем в корпус шприца.

Как сделать простейший тестер для ремонта цифровой техники

Как сделать простейший тестер для ремонта цифровой техники

Фиксируем провод от иголки нейлоновой стяжкой.

Как сделать простейший тестер для ремонта цифровой техники

Собираем схему тестера:

Как сделать простейший тестер для ремонта цифровой техники

Припаиваем резисторы по схеме.

Как сделать простейший тестер для ремонта цифровой техники

Припаиваем провода к зажимам.

Как сделать простейший тестер для ремонта цифровой техники

Изолируем все узлы термоусадкой.

Как сделать простейший тестер для ремонта цифровой техники

Все скрутки засовываем в корпус шприца и заливаем горячим клеем.

Как сделать простейший тестер для ремонта цифровой техники

Тестер готов к эксплуатации.

Как сделать простейший тестер для ремонта цифровой техники

Работа с тестером

Подключаем зажими к питанию устройства, которое нужно диагностировать. Общее напряжение питания в схеме логики 5 В.

Как сделать простейший тестер для ремонта цифровой техники

Включаем питание устройства. На тестере загорелся синий светодиод, указывающий на неопределенный уровень, так как щуп-игла никуда не подключена.

Как сделать простейший тестер для ремонта цифровой техники

Производим тестирование устройства. Если прикоснуться щупом к массе - загорится красный светодиод.

Как сделать простейший тестер для ремонта цифровой техники

Как сделать простейший тестер для ремонта цифровой техники

Если попасть щупом в переменное напряжение какого-нибудь генератора частоты, то будут гореть оба светодиода красный и зеленый.

Такой несложной прозвонкой можно быстро выявить пробитые и неисправные узлы.

Этот тестер существенно экономит время по сравнению с временем прозвонки обычным мультиметром.

Смотрите видео

Принципы диагностики неисправностей материнских плат ноутбуков

После того как вы разобрали ноутбук и добрались до материнской платы, в первую очередь стоит внимательно осмотреть её на предмет окислов, потемневших участков, следов пайки, нагара, вздутий текстолита и других повреждений. Внимательно осматриваем все разъёмы (чтобы нигде ничего не коротило). По результатам первичного внешнего осмотра уже можно составить определённые выводы.

Далее действуем по ситуации. К примеру, если будут найдены следы окисления, то надо снимать с платы всё что снимается и хорошенько её промыть (я промываю водой с фейри и зубной щёткой, а затем выдуваю всю влагу с платы с помощью компрессора). Досушивать плату желательно на "печке" нижним подогревом с температурой 60 градусов, только без фанатизма. Под микроскопом осматриваем отгнившие элементы и восстанавливаем!

Если же ничего подозрительного на плате не обнаружено, стоит проверить наличие короткого замыкания (КЗ) на плате. Как это делается?

Если вы ДОСКОНАЛЬНО не знаете платформу, лучше скачать схему и уже по ней смотреть цепи питания. Схемы ищутся не по названию ноутбука, а по названию платформы (подробно об определении платформ можно почитать тут).

Ищем по схеме где проходит 19-ти вольтовая линия питания и меряем сопротивление относительно земли. Оно должно быть очень большим!

Если нашлось заниженное сопротивление по высокому (19В), то следует понять в каких цепях оно присутствует — в обвязке чаржера (Сharger в переводе с английского "зарядное устройство") или в нагрузке. Чтобы понять как это сделать, давайте рассмотрим принцип работы чаржера:

Даташит от микросхемы чаржера BQ24753A

Для примера я взял даташит от микросхемы чаржера BQ24753A. Итак, что же происходит при подключении блока питания?

На ACDET (детектор зарядника) через резистор, который является делителем, приходит напруга и если она больше 2.4В, то чаржер сообщает мультиконтроллеру о переходе в режим зарядки по каналу IADAPT. При этом OVPSET определяет порог входного напряжения и если всё нормально, то ключ (мосфет) Q3 закрывается и управляющая ACDRV открывает Q1, тем самым запитывая чаржер уже от БП (PVCC 19В) и проходит Q2, после чего уходит в нагрузку.

Я не буду пояснять для чего служат остальные выводы, ибо это будет очень долго, но если вам интересно, то вы можете сами поискать даташит и вдумчиво изучить остальной функционал.

Вернёмся к тому, что нам надо определить, где присутствует КЗ (в нагрузке или до неё). Исходя из вышесказанного, вы должны понимать, что если пробит конденсатор С1 и мы будем искать КЗ в нагрузке, то его там попросту не обнаружим. На разъёме оно будет просаживаться, поэтому надо производить замеры относительно земли. Сперва проверяем на резисторе R10, затем на PVCC микросхемы чаржера и, наконец, на резисторе Rас. Так же, в обязательном порядке, проверяем мосфеты Q1, Q2 и Q3 на пробой (желательно с ними проверить Q4 и Q5).

Далее, если допустить что КЗ не в нагрузке, то воспользуемся ЛБП (лабораторным блоком питания) с ограничением по току. Тыкаем в область КЗ и найдя на плате греющиеся элементы, заменяем их. Процедура производится до того момента, пока КЗ не уйдёт (можно обойтись и без ЛБП, просто выпаивая подозрительные элементы и заменяя, если они пробиты, но это гораздо дольше).

Совсем другое дело, если короткое в нагрузке. Тут уже, перед тем как лазить ЛБП, следует убедиться что все мосфеты во вторичных цепях питания, на которые приходит высокое (другими словами верхнее плечо) не пробиты. Сейчас поясню вам зачем это надо, а для наглядности рассмотрим часть цепи шимкотроллера RT8202A (в схеме от ASUS k42jv это питальник оперативы):

Часть цепи шимконтроллера RT8202A

Как видно из рисунка, если у вас насквозь пробит PQ1, то все что вы будете подавать в линию высокого (в данном случае оно обзывается AC_BAT_SYS), будет приходить на дроссель и далее в узлы питания оперативы (если вы её не вытащили заранее). Подумайте что будет, если на её месте окажется цепь питания видюхи.

При наличии КЗ со стороны нагрузки, делаем те же манипуляции с ЛБП, только ставим ту напругу, которая должна быть в этой цепи (можно меньше, но не больше) и снова ищем что греется. Если будут греться большие чипы (имеется ввиду север, юг и т.д.), то данную процедуру следует прекратить и искать КЗ размыкая цепи.

Если КЗ нашлось в обвязке, то сперва проверяем нижний ключ, а потом уже всё остальное (можно тем же ЛБП).

Питания не поднимаются либо поднимаются, но не все.

Для начала нам нужно убедиться что на плату поступает 19В. Если оно отсутствует, проверяем в следующей последовательности разъём питания -> мосфет -> нагрузка. Убеждаемся что на разъёме есть 19В, далее проверяем мосфет (на стоке и истоке должны быть 19В). Если на стоке напряжение есть, а на истоке отсутствует, то проверяем его на целостность и что управляет его затвором.

Проверяем VIN на микросхеме чаржера и наличие DCIN, ACIN, ACOK. Если сигналы отсутствуют, следует заменить чаржер.

Так же, рекомендую прошить биос, потому как именно в биосе прописаны основные алгоритмы (логика) платы, в том числе и алгоритм запуска. Многие попросту ленятся шить BIOS (его ведь ещё надо найти и/или порезать) и начинают ковырять усердно плату, убивая на это время и саму плату тоже, а оказывается, что нужно было всего-навсего прошить биос. В моём случае оказалось достаточным просто сбросить настройки биоса, чтобы плата запустилась.

Итак, вы прошили биос и изменений не последовало. Идём дальше. Во многих схемах есть страничка с "Power on sequence" (последовательность питания), открываем и смотрим какие напряжения и сигналы должны появляться в какой момент времени. Для примера приведу блок-схему от Asus k42jv mb2.0:

Power on sequence (последовательность питания) ноутбука asus k42jv:

Power on sequence

Питание мультиконтроллера

Питание флешки (bios) asus k42jv

сигнал включения шима дежурки ENBL

Затем если эти шимконтролеры исправны и питания поднимаются они отдают в цепь детектора Power Good-ы. Вот так выглядит цепь POWER GOOD DETECTER:

Цепь POWER GOOD DETECTER

Далее формируется сигнал SYSTEM_PWRGD он же является EN (сигналом включения) для шима который формирует +VTT_CPU — напряжение питания терминаторов процессора (дополнительное напряжение питания процессора). Этот шим так же выдает +VTT_CPU_PWRGD в цепь второго детектора, а детектор, в свою очередь, посылает на процессор сигнал H_VTTPWRGD, сообщая что сие питание в норме:


Мы рассмотрели последовательность включения питаний на отдельном ноутбуке, но хочу заметить что на разных платформах эти последовательности очень похожи. Теперь, для полного счастья, рассмотрим принцип работы шимконтроллеров, дабы иметь представление что делать, если вдруг какие то питания не поднимаются. Для примера возьмём RT8202APQW:

шимконтроллер RT8202APQW

Рассмотрим на простом примере, как же работает ШИМ. Представьте, что вы едете на электромобиле и у вас есть всего две педали "газ" и тормоз, только с условием, что педаль газа можно нажимать только на максимум и никак иначе. При этом вам необходимо держать скорость в пределах скажем 50 километров в час.

Мы знаем, что мгновенно развить такую скорость не получится — после нажатия на педаль газа и до того момента, как вы достигните скорости 55 километров в час должно пройти какое-то время. Далее вы отпускаете педаль и начинает действовать сила инерции и противодействующая ей сила трения. Ваша скорость постепенно снижается до 45 км в час и вы снова кратковременно нажимаете на педаль газа. Таким образом ваша средняя скорость передвижения будет составлять 50 км/ч. Умнее ничего не придумал.

ШИМ работает по тому же принципу, только вместо педали газа у него затворы транзисторов (ключей). В результате, до дросселя у нам формируется такое "прыгающее" напряжение (если посмотреть осциллографом то можно увидеть пилообразный сигнал). Далее, благодаря дросселю и конденсатору (низкочастотный LC фильтр) напряжение стабилизируется и на осциллографе мы увидим "прямую".

Давайте разберёмся что за контакты на нашей шимке и зачем они нужны:

  1. TON – это сенсор напруги, которая поступает на верхий ключ, собственно он и измеряет напругу, которая будет проходить при открытии ключа
  2. VDDP – это питание драйверов для управления затворами ключей
  3. VDD – основное питание шим контроллера
  4. PGOOD – сигнал говорящий о том что шим работает и питание в порядке
  5. EN/DEM – это сигнал включения шима, переход в режим работы так сказать
  6. GND – земля
  7. BOOT – вольтодобавка, он входит в состав драйвера управляющего верхним ключом
  8. UGATE – это управляющая затвором верхнего ключа
  9. PHASE – общая фаза
  10. LGATE – управляющая затвором нижнего ключа
  11. OC – настройка тока (ограничение)
  12. FB – канал обратной связи
  13. VOUT – проверка выходного напряжения.

Для того чтобы ШИМ работал, требуется не так уж и много. Прежде всего следует убедиться, что вся мелочёвка в обвязке целая и соответствует номиналам. Затем проверяем запитан ли ШИМ (VDD и VDDP), убеждаемся в наличии EN (сигнала включения) и что приходить высокое на TON. На ASUS-ах по линии TON не редко отгнивает резистор, в результате нет питания выдаваемого этим шимом.

В данном случае я привёл пример работы одноканального ШИМа, но для полноты картины предлагаю рассмотреть ШИМ, который имеет несколько синхронно работающих каналов (шим питания процессора). Тут следует пояснить зачем процессору нужно несколько каналов и почему одного ему бывает недостаточно.

В принципе, на старых платформах не было потребности в том чтобы делать многофазные шимы для питания процессора. Однако, прогресс не стоит на месте и с появлением новых архитектур появилась новая проблема.

Кроме того, для уменьшения пульсации выходного напряжения в многофазных шимах, все фазы работают синхронно с временным сдвигом друг относительно друга.

PWM-контроллер

Для тех кто не понял о чём идет речь, VID (Voltage Identification) — идентификация материнской платой рабочего напряжения процессора. Полагаю, что этого вполне достаточно и пришло время рассмотреть следующий вариант развития событий.

Все питания поднялись, но изображения нет.

И начинаем с прошивки биоса. Не помогло? Подключаемся на внешку (может на CRT или на HDMI — должно появиться изображение). Затем подкидываем пост-карту. Многие считают что это лишняя трата времени, потому что пост может вообще ахинею показать, однако, в некоторых случаях, пост-карта позволяет существенно сузить круг поиска неисправности.

Находим в схеме, где у нас распаян LPC. Если он не идёт на mini PCI-E, то смотрим куда можно подпаять пост-карту (на некоторых платформах присутствует LPC Debug Port).

LPC Debug Port ноутбука ASUS

Немого поясню что же такое LPC. Это внутренняя низкоскоростная параллельно-последовательная шина для подключения к контроллеру ввода-вывода (ICH) низкоскоростных устройств (например микросхемы flash-BIOS и контроллера Super I/O, включающего в себя FDD, порт клавиатуры, LPT и COM-порты).

Итак, у нас есть пост код, остаётся его расшифровать. Данную информацию следует искать по производителю биоса или по вашей платформе. Не лишним будет проверить на форумах типовые неисправности вашей платформы (очень часто помогает).

Далее подкидываем проц и оперативку в разных вариациях (например одну планку в первом слоте, потом во втором, потом 2 планки сразу). Меряем сопротивления каналов RX/TX желательно на всех шинах (мерять надо относительно земли и относительно друг друга, RX не должен звониться накоротко с TX). Учитываем что на каждой шине своё сопротивление, отличие на отдельной шине более чем 50 Ом уже много и может означать что проблема скрыта на этом канале.

После меряем сопротивление относительно земли на кондесаторах под основными чипами (север, юг, видяха). На одинаковых кондёрах должно быть одинаковое сопротивление. Ну и, конечно, желательно скинуть всю переферию, дабы исключить всякие дохлые сетки или ещё что нибудь из этой категории.

Часто ноутбуки ломаются по причине выхода из строя USB (выломали USB и сигнальный контакт попал на 5В). Итог — дохлый юг. Стоит посмотреть "чистоту питаний" осциллографом и потребление платы, запитав её через ЛБП.

Проверяем на отвал сокета. Берём сухую и чистую тряпочку, сминаем её и кладём под сокет слегка прижимая. Смотрим что, где и как греется. Наиболее частая ошибка начинающих мастеров — обнаружив, что при запуске начинает греться южный мост, они сразу решают что проблема в нем. Меняют его, а плата как не работала так и не работает.

А всё потому, что южный мост работает как сумасшедший, пока не пройдёт инит и далее его работа стабилизируется (потому и может за 3 секунды раскаляться). Поэтому, в процессе диагностики желательно повесить на его хотя бы небольшое пассивное охлаждение (чтобы он не сдох).

Если совсем ничего не помогло, можно воспользоваться диагностическим прогревом отдельных чипов (помогает убедится в неисправности чипа). Однако надо учитывать, что далеко не все чипы ведутся на прогрев, а некоторые вообще категорически нельзя греть. В любом случае, не перебарщивайте с прогревом и помните, что если чип заработал после прогрева то его ОБЯЗАТЕЛЬНО надо менять.

Чтобы наверняка продиагностировать поломку северного моста, нужно иметь полный сервис-мануал по данному мосту, а это "секретный" материал, к которому зачастую нет доступа. Без него можно только догадываться. В продаже можно найти специальное диагностическое оборудование, например диагностическую плату для проверки северного моста и каналов памяти. Ещё есть платы для проверки каналов связи процессора с северным мостом.

Так же не стоит забывать проверять LVDS шлейфа, подкидывать матрицы. Например на внешке есть изображение, а на матрице нет, то надо смотреть считывается ли EDID с матрицы и проверять приходит ли к ней питание. Часто бывает, что попросту нет подсветки.

Рассмотрим что такое LVDS (low-voltage differential signaling). В переводе это "низковольтная дифференциальная передача сигналов", то есть способ передачи электрических сигналов, позволяющий передавать информацию на высоких частотах при помощи дешёвых соединений на основе медной витой пары.

"Витая пара" тут имеет буквальное значение. То есть, если вы решили не менять повреждённый шлейф, а восстановить его, заменив провода, не забывайте что пары должны быть свиты друг с другом. Если этого не сделать, то получите артефакты на матрице. Кроме того шлейф должен быть должным образом экранирован.

Чтобы на матрице появилось изображение, необходимо запитать контроллер матрицы, после чего он начинает "общаться" с тем, что с ним должно общаться (север, видяха, мульт).

Предположим это будет видяха. Она определяет, что по такой-то шине подключён такой-то контроллер, считывает EDID и начинает выдавать туда изображение. Тут же смотрим есть ли сигнал регулировки подсветки (обычно с мульта).

Обращаю ваше внимание на то, что когда вы подкидываете шлейф, убедитесь что он подходит под эту модель, в противном случае есть шанс спалить что-нибудь серьёзное (типа видяхи). Бывает и такое, что люди тыкают в разъём шлейфа что попало, а по итогу хватаются за голову и не понимают в чем же дело и почему плата резко начала дымиться.

Напоследок рассмотрим назначение пинов на LVDS разъёме. Для примера воспользуемся разъёмом из схемы того же Asus k42jv, который был рассмотрен выше:

LVDS разъём ноутбука Asus k42jv

  1. AC_BAT_SYS - это наше высокое, идет на питание подсветки.
  2. +3VS - питание контроллера и прошивки матрицы
  3. +3VS_LCD - питание самой матрицы
  4. LVDS_EDID_DATA_CON и LVDS_EDID_CLK_CON - информационные каналы (считывание прошивки)
  5. LCD_BL_PWM_CON - регулировка яркости
  6. BL_EN_CON - включение подсветки

Далее идут пары LVDS, их кстати тоже следует измерять на разность сопротивлений и относительно земли, и относительно друг друга! Также на этом разъёме висит веб камера и микрофон.

Наверно на этом мы и закончим нашу тему. Попрошу не судить меня строго, возможно где-то и ошибся или не дописал чего то, буду очень рад если укажете на ошибки и, возможно, дополните.

Если считаете статью полезной,
не ленитесь ставить лайки и делиться с друзьями.

Купил дорогой роутер, а Wi-Fi всё равно слабый. Почему так? А вы знали, что с SSD нельзя восстановить удалённые файлы? Большие проблемы с маленькими Mini-ITX Арабский Windows 8.1 после восстановления компьютера Прошивка Samsung GT-S5660 Galaxy Gio Отключаем конфигурацию усиленной безопасности Internet Explorer

Читайте также: