Синхротрон своими руками

Добавил пользователь Алексей Ф.
Обновлено: 10.09.2024

Константин Владимирович Золотарев — кандидат физико-математических наук, заведующий сектором Института ядерной физики им. Г. И. Будкера СО РАН (Новосибирск). Доцент кафедры ускорительной физики Новосибирского государственного университета. Автор и соавтор 93 научных работ.

Павел Алексеевич Пиминов — кандидат физико-математических наук, начальник ускорительного комплекса ВЭПП-3 / ВЭПП-4 Института ядерной физики им. Г. И. Будкера СО РАН (Новосибирск). Автор и соавтор 103 научных работ.

Почти полстолетия назад выдающийся российский физик Г. И. Будкер — основатель новосибирского Института ядерной физики, выдвинувший и реализовавший идею об увеличении энергии взаимодействия частиц методом встречных пучков, — назвал ускорители заряженных частиц микроскопами современной физики, поскольку они позволяют судить о структуре наблюдаемого объекта по картине рассеяния на нем потока частиц, только уже не световых квантов, как в микроскопе, а частиц высокой энергии. С ростом предельных энергий ускорителей началась настоящая революция в теории элементарных частиц и внутриядерных взаимодействий, продолжающаяся и поныне, значение которой для науки и практики трудно переоценить.

    (А. Николенко) (Н. Полосьмак, В. Трунова) (Н. Полосьмак, К. Купер)

Экскурсия по государству ИЯФ: девять лет спустя

Как известно, синхротронное излучение (СИ), которое для своих многочисленных пользователей служит хлебом насущным, для физиков-ускорительщиков является паразитным: ведь с ним уносится немалая часть энергии, которую они с такими усилиями закачивают в пучок заряженных частиц, разогнанных почти до световой скорости. К тому же, если этот хлеб в ИЯФе и не горек, то и не всегда обилен. Дело в том, что источниками синхротронного излучения в институте сейчас служат ускорители ВЭПП-3 (созданный в 1972 г.) и ВЭПП-4М (начавший работу в начале 1980-х гг. и впоследствии модернизированный), на которых также проводятся исследования по физике элементарных частиц. В результате на долю экспериментов с синхротронным излучением приходится лишь около 15% общего времени работы ускорителей.

Для координации усилий, направленных на развитие исследований с СИ, эффективное использование источников СИ и повышение качественного уровня исследований 1 декабря 1981 г. на базе ускорительного оборудования и лабораторий ИЯФ СО АН СССР был создан Сибирский центр синхротронного излучения, в 1991 г. преобразованный в Сибирский международный центр синхротронного излучения (СибМЦСИ) — открытую лабораторию института, в деятельности которой могут принимать участие российские и зарубежные организации и лица. В 2003 г. заработала 1-я очередь лазера на свободных электронах, и в 2005 г. центр коллективного пользования был переименован в Сибирский центр синхротронного и терагерцового излучения (СЦСТИ).

Таким образом, хотя эксперименты с использованием пучков синхротронного излучения ведутся в ИЯФе еще с 1973 г., для этих целей до сих пор — спустя более сорока лет! — используются ВЭПП-3 / ВЭПП-4, т. е. не слишком яркие источники СИ 1-го поколения, работающие в рентгеновском диапазоне (длина волны от 0,01 до 1 нм) и энергией пучка 2 или 4 ГэВ.

В ускорительно-накопительном комплексе для генерации синхротронного излучения в ИЯФ СО РАН используются ВЭПП-3 / ВЭПП-4, причем ВЭПП-3 является бустерным (промежуточным) ускорителем для коллайдера ВЭПП-4. Ускорение происходит от энергии 360 МэВ до энергии 2 ГэВ; в режиме накопителя ускоритель может удерживать пучки с энергией 2 ГэВ и током около 100 мА в течение длительного времени (5–6 ч). Именно в этом режиме и ведутся работы с использованием синхротронного излучения

Нужно отметить, что с запуском в 2003 г. 1-й очереди лазера на свободных электронах, источника мощных пучков терагерцового излучения, исследовательский арсенал института принципиально расширился, однако это не сняло проблемы создания более мощного источника СИ нового поколения, позволяющего проводить работы в рентгеновском диапазоне.

Прямолинейный участок накопителя ВЭПП-3

Вид экспериментального зала СИ на накопителе ВЭПП-4

История синхротронного излучения

Существуют три поколения источников синхротронного излучения. К первому относятся синхротроны и накопительные кольца, созданные для физики высоких энергий; ко второму — накопительные кольца, разработанные специально как источники СИ. Излучение в этих источниках обычно генерируется отклоняющими магнитами, и поскольку оно направлено по касательной к траектории частицы, подобно свету автомобильных фар на повороте, то его пучок имеет веерообразную форму с большим углом рассеяния.

Об авторе

Процедура лазерной юстировки золотых фокусирующих зеркал монохроматора

Кроме того, у нас создаются и используются методики, которые в принципе затруднительно развивать в больших синхротронных центрах, в том числе из-за административно-организационных ограничений. Примером может служить изучение детонационных процессов с субмиллисекундным временным разрешением в специальной взрывной камере, расположенной прямо на канале вывода синхротронного излучения. Так как синхротронное излучение выходит не сплошным потоком, а в виде коротких вспышек, повторяющих временную структуру коротких электронных сгустков (в нашем случае длительность таких вспышек составляет 1 нс, а период повторения — около 100 нс), то, изучая особенности взаимодействия такого излучения с веществом, можно определять текущее состояние вещества с соответствующим временным разрешением. То есть за то мгновение, которое продолжается детонация, изучить характер химических процессов, происходящих в зоне движения детонационного фронта, динамику роста детонационных наноалмазов и другие интересные специалистам эффекты.

Новая станция для изучения детонационных процессов в зале СИ ВЭПП-4 рассчитана уже на заряды весом до 200 г

Тайна медного волоса

Об авторах

Рентгенофлуоресцентный элементный анализ органических материалов с использованием синхротронного излучения, примененный к археологическим находкам, дает возможность приоткрыть завесу тайны над жизнью народов, давно ушедших с исторической арены.

Станция рентгенофлуоресцентного элементного анализа в ИЯФ СО РАН (Новосибирск)

В медном котелке из 2-го пазырыкского кургана были обнаружены обугленные семена и веточки конопли — следы воскурений (слева). Государственный Эрмитаж. Справа — реконструкция Д. Позднякова (Новосибирск)

Но откуда бралась эта избыточная медь? На основе имеющихся данных была выдвинута гипотеза, что причина этого явления крылась не в условиях окружающей среды, а в культурной традиции воскурения конопли из бронзовых курильниц, что и было подтверждено анализом конопли из курильницы, обнаруженной в одном из больших Пазырыкских курганов. Вдыхая пары конопли, люди постепенно отравлялись парами меди, а более высокие концентрации меди в волосах мужчин свидетельствуют о более высокой частоте и длительности воскурений в течение жизни.

Этот сверхпроводящий вигглер с магнитным полем до 3 Тл и стоимостью около 1,4 млн евро ИЯФ СО РАН создал для источника СИ ANKA (Германия). Вся работа заняла около полутора лет. В этом устройстве был впервые использован криостат с косвенным охлаждением магнитной системы, обеспечивающий надежность, экономичность и простоту криогенного обслуживания. Подобные вигглеры планируется использовать и в линейном коллайдере CLIC в ЦЕРНе

Сейчас институтская группа, занимающаяся вигглерами, переориентируется на производство ондуляторов — сверхпроводящих устройств с большим числом полюсов и малым магнитным полем. В отличие от вигглеров, в этих устройствах излучение от отдельных полюсов идет в когерентном режиме, благодаря чему можно получить монохроматическое излучение с существенно большей спектральной яркостью. В подобных устройствах заинтересованы все современные центры. Например, предварительное соглашение о совместных работах в данной области заключено с британским DLS.

Главной проблемой Сибирского центра синхротронного и терагерцового излучения было и остается отсутствие собственного специализированного источника СИ, при этом за последние десять лет было предложено, по крайней мере, пять (!) различных вариантов его создания. Все необходимые составляющие для этого, такие как опыт, технологии и производство, в ИЯФе есть. Отсутствует только плановое финансирование.

Надо сказать, что последний вариант нового источника отличается от всех предыдущих (и отвергнутых) тем, что он максимально экономичен. В проекте предусматривается использовать уже существующий тоннель, где сейчас располагается ВЭПП-3. Также предполагается расширить имеющийся экспериментальный зал, где будут расположены новые пользовательские станции. В качестве излучающих устройств планируется использовать сверхпроводящий вигглер и пару сверхпроводящих дипольных магнитов: специальная магнитная структура кольца будет сочетать предельную компактность с возможностью оптимизации яркости пучков.

Сегодня в Сибирском центре синхротронного и терагерцового излучения работает 12 станций синхротронного излучения и 4 станции терагерцового излучения. Основными целями и задачами центра является проведение фундаментальных и прикладных исследований в физике, химии (в том числе катализе), биологии, медицине, экологии, геологии, материаловедении, а также разработка новых методов и технологий и создание специализированных источников излучения и новых экспериментальных станций.

В заключение хочется отметить, что за последние десятилетия в мире резко возрос интерес к исследованиям, проводящимся на стыке наук, и в нашем академическом центре сформировалось своего рода мультидисциплинарное научное сообщество, объединяющее исследователей из институтов новосибирского Академгородка и других научных центров. Большая заинтересованность этих специалистов в исследованиях, проводимых с использованием СИ, гарантирует нескончаемый поток исследовательских материалов, защит, публикаций и, конечно, предельно эффективное использование всех имеющихся методов и установок. В новом источнике СИ должен быть заинтересован и Новосибирский государственный университет: в нашем синхротронном центре могут проходить практику студенты всех естественно-научных специальностей, как это делается во многих других университетах мира.

Палицы или ручки гроба?

Об авторах

В некоторых курганах хуннской знати, захороненной в горах Ноин-Ула на севере Монголии, были обнаружены необычные металлические стержни, по виду медные, назначение которых стало предметом спора археологов. На фото — стержни из 20-го ноин-улинского кургана, обнаруженные Российско-Монгольской археологической экспедицией в 2006 г.

Этот металлический стержень был найден в 22-м ноин-улинском кургане на полу внутренней погребальной камеры под слоем шелкового текстиля. Раскопки 2012 г.

Металлический стержень из 22-го ноин-улинского кургана хунну имеет стальную сердцевину и медную оболочку. Как показало комплексное исследование, медь была нанесена заливкой из расплава в отливочную форму, при этом внутренний стальной прут был зажат с торцов между двух чугунных пластин, о чем свидетельствуют отверстия на закругленных концах стержней

На основе рентгеноструктурного анализа во внутреннем стальном пруте было определено соотношение фаз цементита (карбида железа Fe3C) и феррита (a-Fe) и, соответственно, содержание углерода в стальном стержне, которое варьировало в диапазоне 0,1–0,4%. Абсолютно разнонаправленная ориентация кристаллитов феррита и цементита свидетельствовала об отсутствии механических напряжений в образце.

В составе стальной сердцевины были обнаружены небольшие (менее 0,1%) примеси марганца, никеля и меди, а в составе оболочки — небольшие примеси серебра (0,5%), свинца (0,3%), сурьмы и олова (не более 0,1%). Наличие этих примесей вполне характерно для железных и медных руд.

В медной оболочке были отмечены микровключения сульфида меди (Cu2S) округлой оплавленной формы с характерными размерами в 20–30 мкм. Сульфид меди распространен в природе в виде минерала халькоцита, который, очевидно, и был использован в качестве руды. Для получения меди из измельченной халькоцитной руды необходима продувка кислородом при температурах 1200–1300 °С, что подразумевает наличие сложного металлургического производства, включая специально оборудованную печь, оснащенную мехами (Hauptmann, 2000).

Микровключения, обнаруженные в образцах стали (вюстит, фаялит и аморфизованный кварц), представляют собой остатки шлака и характерны для производства кричного железа (Buchwald et al., 2000). Фаялит присутствует во включениях в виде рекристаллизовавшейся из расплава фазы с примесями оксидов щелочных и щелочноземельных металлов, а поскольку температура его плавления лежит в пределах 1100–1200 °С, этот факт говорит о том, что железо было получено в тех же температурных условиях, что и медь.

Все включения имеют характерную ориентацию вдоль жезла, что, очевидно, обусловлено направлением проковки стального стержня. Обычно при изготовлении кованого железа науглероживается в основном внешняя сторона, поэтому содержание углерода в стали имеет характерную направленность и падает в центре изготавливаемого предмета. Однако в нашем случае этого не наблюдается, поэтому можно предположить, что стержень был перекован из другого стального предмета.

Зачем нужен ускоритель

Какие открытия впереди

От коллайдера синхротрон отличается своим прикладным значением — его излучение позволяет проводить полезные даже на бытовом уровне исследования, тогда как на коллайдере пытаются разгадать тайны мироздания, имеющие весьма отдаленное отношение к обычной жизни, подчеркивает Зубавичус.

Например, на установке можно будет изучать действие лекарств, новые материалы, исторические артефакты, музейные экспонаты, а также различные устройства, включая аккумуляторы и батарейки, гибкие сенсорные экраны, самоочищающиеся покрытия, полимеры, каталитические конверторы для автомобилей.

В результате размер такого фотонного пучка может быть порядка десяти нанометров при длине волны меньше ангстрема. Зубавичус отмечает, что методами просвечивания или дифракции можно изучать любые материалы на атомном уровне или быстропротекающие процессы в реальном времени. Установка — фактически мощнейший гигантский микроскоп.

Что построят под Новосибирском


На кольце установят специальные устройства, генерирующие синхротронное излучение, вокруг возведут стену биологической охраны для защиты персонала — синхротронное излучение в триллионы раз ярче, чем то, которое можно получить с помощью обычной рентгеновской трубки. Несмотря на сильную радиацию, местному населению опасаться синхротрона не стоит.


Почему синхротрон такой дорогой


При этом примерно 80% оборудования для синхротрона планируется произвести в России. По оценке ученого, новосибирские специалисты обладают всеми необходимыми компетенциями. Например, в ИЯФ СО РАН спроектируют и изготовят ускорительный комплекс, включающий линейный ускоритель, бустер и основное кольцо-накопитель.

Исследования в области физики высоких энергий ведутся самыми разными методами. Но всё же большинство из них так или иначе используют ускорители частиц. Сегодня поговорим об одном из типов таких ускорителей — синхротронах.

Обычно синхротроны имеют вид кольца, по которому нарезают круги ускоряемые частицы. Но иногда в них добавляют небольшие прямые отрезки.

Ускоряются частицы в специальных устройствах — радиочастотных резонаторах. Они расположена на всём протяжении кольца с некоторым интервалом друг между другом. Чтобы ускоряемые частицы не покидали пределы вакуумной трубы, в которой они двигаются, их траектории искривляют при помощи больших магнитов. Есть также магниты, которые подфокусируют пучки, чтобы они за время ускорения не разлетелись в стороны.

Процесс ускорения частиц в синхротроне довольно медленный. Например, в Большом адронном коллайдере они должны пройти по кольцу 14 миллионов раз прежде чем наберут максимальную энергию. Правда, поскольку они движутся со скоростью, близкой к скорости света, на это уходит всего 20 минут.

После того, как частицы достигли нужной энергии, их сталкивают друг с другом. Для этого в синхротроне частицы циркулируют в обе стороны. Магнитами их траектории пересекают. Однако за один раз происходит всего несколько столкновений. Но за счёт того, что частицы продолжают циркулировать с огромной скоростью по трубе, пучки снова столкнутся через доли секунды. Так что довольно быстро набирается огромное количество столкновений, что позволяет исследовать даже очень редкие события.

Так, например, детекторы ATLAS и CMS, установленные на Большом адронном коллайдере, регистрируют за год сотни миллионов столкновений.

Синхротроны могут ускорять не только протоны. На том же Большом адронном коллайдере ускоряли и тяжёлые ядра свинца. Большое прикладное значение имеют синхротроны, ускоряющие электроны. Попадая в поле магнитов электроны начинают излучать яркий рентген, который требуется для многих приложений. Например, чтобы определять строение белковых молекулы для биохимии. При этом электроны теряют очень много энергии, и поэтому не могут достичь в синхротронах такой же большой энергии, как протоны.

Технологии в СССР развивались стремительно. Чего только стоит запуск первого искусственного спутника Земли, за которым наблюдал весь мир. Мало кто знает, что в тот же 1957 год в СССР заработал (то есть был не просто достроен и введен в эксплуатацию, а именно запущен) синхрофазотрон. Слово это обозначает установку для разгона элементарных частиц. Практически каждый сегодня слышал про Большой адронный коллайдер – он представляет собой более новую и усовершенствованную версию описанного в данной статье устройства.

синхрофазотрон что это

Что это – синхрофазотрон? Для чего он нужен?

Эта установка представляет собой большой ускоритель элементарных частиц (протонов), который позволяет более глубоко изучить микромир, а также взаимодействие этих самых частиц друг с другом. Способ изучения очень прост: разбить протоны на мелкие части и посмотреть, что находится внутри. Звучит все просто, но сломать протон – это чрезвычайно сложная задача, для решения которой потребовалось строительство столь огромного сооружения. Здесь по специальному тоннелю частицы разгоняются до огромных скоростей и затем направляются на мишень. Ударившись о нее, они разлетаются на мелкие осколки. Ближайший "коллега" синхрофазотрона, Большой адронный коллайдер, действует приблизительно по такому же принципу, вот только там частицы разгоняются в противоположных направлениях и ударяются не о стоячую мишень, а сталкиваются друг с другом.

Теперь вы немного понимаете, что это – синхрофазотрон. Считалось, что установка позволит сделать научный прорыв в области исследования микромира. В свою очередь, это позволит открыть новые элементы и способы получать дешевые источники энергии. В идеале хотели открыть элементы, превосходившие по эффективности обогащенный уран и являющиеся при этом менее вредными и более простыми в утилизации.

 синхрофазотрон слова

Применение в военных целях

Стоит отметить, что создавалась данная установка для осуществления научно-технического прорыва, однако ее цели были не только лишь мирными. Во многом научно-технический прорыв обязан гонке военных вооружений. Синхрофазотрон был создан под грифом "Совершенно секретно", и его разработка и строительство проводились в рамках создания атомной бомбы. Предполагалось, что устройство позволит создать совершенную теорию ядерных сил, однако все оказалось не так просто. Даже сегодня эта теория отсутствует, хотя технический прогресс шагнул далеко вперед.

Что такое синхрофазотрон простыми словами?

Если обобщить и говорить понятным языком? Синхрофазотрон – это установка, где протоны можно разогнать до большой скорости. Она состоит из закольцованной трубы с вакуумом внутри и мощных электромагнитов, которые не дают протонам двигаться хаотично. Когда протоны достигают своей максимальной скорости движения, их поток направляется на специальную мишень. Ударяясь о нее, протоны разлетаются на мелкие осколки. Учены могут видеть следы разлетающихся осколков в специальной пузырьковой камере, и по этим следам они анализируют природу самих частиц.

Пузырьковая камера – это немного устаревшее устройство для фиксации следов протонов. Сегодня в подобных установках применяются более точные радары, дающие больше информации о движении осколков протонов.

принцип синхрофазотрона

Несмотря на простой принцип синхрофазотрона, сама эта установка является высокотехнологичной, и ее создание возможно только при достаточном уровне технического и научного развития, которым, безусловно, обладал СССР. Если приводить аналогию, то обычный микроскоп является тем устройством, предназначение которого совпадает с назначением синхрофазотрона. Оба прибора позволяют исследовать микромир, только последний позволяет "копнуть глубже" и имеет несколько своеобразный метод исследования.

Подробно

Выше была описана работа прибора простыми словами. Разумеется, принцип действия синхрофазотрона является более сложным. Дело в том, что для разгона частиц до высоких скоростей необходимо обеспечить разность потенциалов в сотни миллиарды вольт. Это невозможно даже на нынешнем этапе развитии технологий, не говоря уже о предыдущем.

Поэтому было принято решение разгонять частицы постепенно и гонять их по кругу долго. На каждом кругу протоны подпитывались энергией. В результате прохождения миллионов оборотов удалось набрать требуемую скорость, после чего их направляли в мишень.

Именно такой принцип применялся в синхрофазотроне. Сначала по тоннелю частицы двигались с небольшой скоростью. На каждом круге они попадали на так называемые промежутки ускорения, где получали дополнительный заряд энергии и набирали скорость. Эти участки ускорения являются конденсаторами, частота переменного напряжения которых равна частоте прохождения протонов по кольцу. То есть частицы попадали на участок ускорения при отрицательном заряде, в этот момент напряжение резко возрастало, что придавало им скорости. Если же частицы попадали на участок ускорения при положительном заряде, то их движение притормаживалось. И это - положительная особенность, так как из-за нее весь пучок протонов двигался с одной скоростью.

коллега синхрофазотрона

И так повторялось миллионы раз, и когда частицы приобретали требуемую скорость, их направляли в специальную мишень, о которую те разбивались. После группа ученых изучала результаты столкновения частиц. Вот по такой схеме синхрофазотрон и работал.

Роль магнитов

Известно, что в этой огромной машине по ускорению частиц применялись также мощные электромагниты. Люди ошибочно полагают, что они использовались для разгона протонов, но это не так. Разгонялись частицы с помощью специальных конденсаторов (участков ускорения), а магниты лишь удерживали протоны в строго заданной траектории. Без них последовательное движение пучка элементарных частиц было бы невозможно. А высокая мощность электромагнитов объясняется большой массой протонов при высокой скорости движения.

С какими проблемами столкнулись ученые?

Одна из главных проблем при создании этой установки заключалась именно в разгоне частиц. Конечно, им можно было придавать ускорение на каждом круге, однако при ускорении их масса становилась выше. При скорости движения, близкой к скорости света (как известно, ничто не может двигаться быстрее скорости света), их масса становилась огромной, из-за чего удерживать их на круговой орбите было сложно. Из школьной программы нам известно, что радиус движения элементов в магнитом поле обратно пропорционален их массе, поэтому с ростом массы протонов приходилось увеличивать радиус и использовать большие сильные магниты. Подобные законы физики сильно ограничивают возможности для исследования. Кстати, ими же можно объяснить, почему синхрофазотрон получился таким огромным. Чем большим будет тоннель, тем большие магниты можно установить для создания сильного магнитного поля для удержания нужного направления движения протонов.

что такое синхрофазотрон простыми словами

Вторая проблема – потеря энергии при движении. Частицы при прохождении по окружности излучают энергию (теряют ее). Следовательно, при движении на скорости часть энергии улетучивается, и, чем выше скорость движения, тем выше и потери. Рано или поздно наступает момент, когда величины излучаемой и получаемой энергии сравниваются, что делает невозможным дальнейший разгон частиц. Следовательно, возникают потребности в больших мощностях.

Можно сказать, что мы теперь более точно понимаем, что это – синхрофазотрон. Но чего именно добились ученые в ходе испытаний?

Какие исследования проводились?

Естественно, работа этой установки не прошла бесследно. И хотя от нее ожидали получить более серьезные результаты, некоторые исследования оказались крайне полезными. В частности, ученые изучили свойства ускоренных дейтронов, взаимодействий тяжелых ионов с мишенями, разработали более эффективную технологию для утилизации отработанного урана-238. И хотя для обычного человека все эти результаты мало о чем говорят, в научной сфере их значимость сложно переоценить.

 синхрофазотрон применение

Применение результатов

Результаты проводимых на синхрофазотроне испытаний применяются даже сегодня. В частности, они используются при строительства электростанций, работающих на атомном топливе, применяются при создании космических ракет, робототехники и сложного оборудования. Безусловно, вклад в науку и технический прогресс этого проекта достаточно большой. Некоторые результаты применяются и в военной сфере. И хотя ученым не удалось открыть новые элементы, которые можно было бы использовать для создания новых атомным бомб, на самом деле никто не знает, правда это или нет. Вполне возможно, что от населения скрывают некоторые результаты, ведь стоит учитывать, что данный проект был реализован под грифом "Совершенно секретно".

Заключение

Теперь вы понимаете, что это – синхрофазотрон, и какова его роль в научно-техническом прогрессе СССР. Даже сегодня подобные установки активно используются во многих странах, вот только есть уже более усовершенствованные варианты – нуклотроны. Большой адронный коллайдер является, пожалуй, самой лучшей на сегодняшний день реализацией идеи синхрофазотрона. Применение этой установки позволяет ученым точнее познавать микромир за счет сталкивания двух пучков протонов, движущихся на огромных скоростях.

принцип действия синхрофазотрона

Что касается нынешнего состояния советского синхрофазотрона, то он был переделан в ускоритель электронов. Сейчас работает в ФИАНе.

В середине 50-х годов прошлого века в Советском Союзе полным ходом шла работа над грандиозной установкой, предназначенной для исследования микромира. Гигантское сооружение было запущено в 1957 году. Советские ученые получили невиданный по тем временам ускоритель заряженных частиц, названный синхрофазотроном.

Содержание статьи

Что такое синхрофазотрон

  • Что такое синхрофазотрон
  • Принцип метода тонкослойной хроматографии
  • В чем разница между центробежной и центростремительной силой

Для чего нужен синхрофазотрон

По своей сути синхрофазотрон представляет собой огромную установку для ускорения заряженных частиц. Скорости элементов в этом устройстве очень велики, как и выделяемая при этом энергия. Получая картину взаимного соударения частиц, ученые могут судить о свойствах материального мира и его строении.

О необходимости создания ускорителя говорилось еще до начала Великой Отечественной войны, когда группа советских физиков во главе с академиком А. Иоффе направила в правительство СССР письмо. В нем подчеркивалась важность создания технической базы для изучения строения ядра атома. Эти вопросы уже тогда стали центральной проблемой естествознания, их решение могло продвинуть вперед прикладную науку, военное дело и энергетику.

Принцип работы синхрофазотрона

Первый мощный ускоритель-синхрофазотрон изначально предполагалось сконструировать на основе комбинации двух принципов, до этого по отдельности использовавшихся в фазотроне и синхротроне. Первый из принципов – изменение частоты электромагнитного поля, второй – изменение уровня напряженности магнитного поля.

Работает синхрофазотрон по принципу циклического ускорителя. Чтобы гарантировать нахождение частицы на одной и той же равновесной орбите, частота ускоряющего поля меняется. Пучок частиц всегда приходит в ускорительную часть установки в фазе с электрическим полем высокой частоты. Синхрофазотрон иногда называют протонным синхротроном, имеющим слабую фокусировку. Важный параметр синхрофазотрона – интенсивность пучка, которая определяется числом содержащихся в нем частиц.

В синхрофазотроне почти полностью устраняются погрешности и недостатки, свойственные его предшественнику – циклотрону. Изменяя индукцию магнитного поля и частоту перезарядки частиц, протонный ускоритель увеличивает энергию частиц, направляя их по нужному курсу. Создание такого прибора произвело революцию в ядерной физике и стало началом прорыва в области изучения заряженных частиц.

Читайте также: