Серверный блок питания своими руками

Добавил пользователь Владимир З.
Обновлено: 05.09.2024

Компьютерные блоки питания – это очень точные и функциональные устройства. Они имеют низкую погрешность в питании устройств, входящих в состав персонального компьютера (ПК) – не более 5%. И достаточную мощность – от 250 Вт и выше.

Часто компьютерные БП используют не по назначению:

  • Они могут питать сторонние устройства.
  • БП изрядно модифицируют (улучшают охлаждение, изменяют выходные напряжения и т.п.) для получения заданного уровня тока.
  • Разбирают на запчасти для сборки собственных БП.
  • И т.д.

Но самая безумная затея – сделать блок питания ПК своими руками!

  • Во-первых, компьютерный БП – это не просто источник нескольких уровней напряжений и тока. Это устройство с обратной связью. Имеется специальный контроллер, отвечающий за управление включением и отключением питания, при особом сигнале БП переходит в дежурный режим и т.д.
  • Во-вторых, в домашних условиях сложно достичь правильной компоновки элементов и уместить схему в заданные габариты. А значит, БП с большой вероятностью будет размещён вне системного блока.
  • В-третьих, даже имея на руках детальную схему БП, её будет сложно собрать своими руками – высокая плотность элементов повышает риск ошибки, не все детали имеются в доступе (скорее всего часть из них будет снята с тех же самых БП, например, с вышедших из строя).
  • В-четвёртых, ошибка в сборке может обойтись очень дорого – стоимость сгоревшей материнской платы, как и большинства подключаемых к БП устройств (процессор, жёсткий диск и т.д.), намного выше стоимости нового БП.

Даже простейший подсчёт затрат времени и денег на закупку компонентов говорит о том, что экономического эффекта от сборки БП для ПК своими руками – нет.

Проще всего приобрести новый БП, скомпоновать несколько (если необходимо увеличить мощность) или модифицировать имеющийся (например, залив его маслом и поместив в специальный корпус для снижения шумности, для понижения температуры в корпусе и т.п. – что актуально для оверлокеров).

Если всё вышеизложенное вас не останавливает, а цель – исследование своих возможностей или детальное изучение БП, то материал ниже – для вас.

Схемы компьютерных БП

Рис. 1. Принципиальная схема БП ПК

Итак, первое, что необходимо усвоить при проектировании собственного БП – на выходе должно быть несколько уровней напряжений:

Комбинация +12 и -12 В может питать цепи напряжением в 24 В.

К примеру, блок питания мощностью 350 Вт обеспечивает следующую силу тока на каналах питания:

+5 В – до 32 А (до 160 Вт);

+12 В – до 16А (до 192 Вт);

Если попытаться измерить показатели напряжения на реальном БП без нагрузки, они могут сильно отличаться от заявленных. Кроме того, некоторые блоки питания способны блокировать напряжение, если нагрузка отключена.

Наиболее простой в сборке можно назвать блоки ATX (старого образца с минимумом микроконтроллеров). Типовая схема выглядит следующим образом.

Рис. 2. Типовая схема блока ATX

Рис. 3. Типовая схема блока ATX

Ядром её служит таймер, выполняющий роль генератора частоты.

Чтобы был понятен принцип работы с напряжением, можно изучить следующую схему.

Рис. 4. Схема принципа работы БП

Она соответствует большинству импульсных источников питания. Переменное напряжение преобразовывается в постоянное, затем генератор импульсов преобразует ток в переменный с высокой частотой. Теперь на базе ВЧ сигнала легко сформировать нужное постоянное напряжение заданного уровня или даже нескольких уровней.

Такой подход позволяет избежать применения тяжёлых и габаритных трансформаторов, но имеет свои нюансы:

  • Возможны ВЧ-помехи (поэтому системный блок ПК включают в сеть через сетевой фильтр);
  • Для БП опасна работа без нагрузки.

Если упомянутую блок-схему наложить на принципиальную схему БП АТХ, то получится следующее.

Выше обозначены основные блоки (легко соотносятся с блок-схемой, обозначенной выше):

1. Выпрямитель сетевого напряжения

2. Генератор частоты

4. Трансформаторный блок

5. Блок выпрямления тока

Из-за того, что первичное выпрямление сетевого напряжения с диодным мостом и конденсатором в роли простейшего фильтра обеспечивало пульсирующий ток, этот подход был пересмотрен.

Более качественный сигнал формируется с применением активного корректора мощности.

Новые поколения компьютерных БП собираются по следующим схемам.

Рис. 6. Схема БП ПК

Они получаются ещё компактнее и надёжнее предшественников – ATX.

Даже собрав БП своими руками, вы не сможете просто так запитать все необходимые узлы и устройства.

image alt text

Когда я впервые увидел такую надпись при опросе версий прошивок HP DL380, то был несколько обескуражен. Эм, ну ладно, если очень нужно – скачай и поставь. Но что за софт может быть в банальном блоке питания? Оказалось, что для диагностики местной системы жизнеобеспечения и обработки отказов по питанию. Там натуральный кластер из блоков питания, со своим арбитром и логикой. Под катом рассказ об устройстве такого "кластера" и о том, почему 2 x 1400 = 2300W.

Два блока питания – в два раза выше надежность? Не всегда, потому что зависит от настроек системы электропитания. Вот о ней подробнее и поговорим. В качестве предметов рассказа я выбрал оборудование среднего серверного класса, вроде такого:

То есть, не блейды и не мейнфреймы – у них все иначе устроено. Обратите внимание, форм-фактор сервера не имеет значения для наличия или отсутствия дополнительных блоков питания.

Начнем с ответа на вопрос "зачем сколько БП, если можно просто хранить небольшой запас запчастей". Системы с резервированием в сервере всегда полезны, даже если не рассматривать отказоустойчивость. Например, они повышают удобство обслуживания и позволяют нам не ночевать в серверной при замене дисков или тех же блоков питания.

Например, второй блок питания поможет, если:

Выйдет из строя ИБП;

Дорожные рабочие найдут месторождение электричества;

Возникнет необходимость переноса сервера в другую стойку;

Два блока питания дают больше гибкости при проектировании серверной комнаты. Например, рабочая схема подключения у одного клиента: в серверной две фазы, подключены к разным блокам питания серверов. Одна фаза подключена к UPS, а вторая работает только через стабилизаторы. Но эта линия идет от генератора с автозапуском. При отключении электричества дизель стартует и серверы продолжают работать, даже если UPS разрядятся. Это всего лишь один из вариантов, подобранный с учетом пожеланий клиента и возможностей бюджета.

Итого, несколько БП нужны для удобства администратора, повышения надежности системы и обеспечения большей мощности.

Простейший вариант систем с двумя блоками питания выглядит как запитывание отдельных комплектующих компьютера от разных блоков, при этом один из них управляющий и питает материнскую плату. Подобные решения практикуют геймеры и майнеры, потому что для установки трех и более видеокарт одного источника питания не хватит. Для подключения используют такие адаптеры:

image alt text

При нажатии на Power замыкаются зеленый сигнальный провод с "землей", давая команду на запуск обоим блокам питания.

Помню, когда-то давно был у меня компьютер уровня Pentium III с набором SCSI дисков. Штатного блока питания перестало хватать, и я подключил старый АТ-блок отдельно для жестких дисков. Запуск чудо-машины происходил так: нажимаем на кнопку дополнительного питания и ждем жужжания дисков, затем включаем основной БП и начинается загрузка.

Даже в эпоху всепроникающего Китая для "самоделкиных" существует множество схем подключения двух блоков питания своими руками, чтобы получилась похожая конфигурация:

image alt text

Но вернемся к промышленным серверным решениям.

Устройство питания по своей логике довольно простое. Блоки подключаются к специальной корзине Power Distribution Backplane, где также присутствует микроконтроллер Power Distribution Unit (не путайте с распределителем питания для серверной стойки). Контроллер отвечает за схему использования доступных БП: одновременно или в режиме primary-backup.

Столь продвинутую подсистему питания можно настраивать под конкретные потребности. При использования сервера с двумя блоками питания доступно несколько режимов работы:

Резервирование, при котором один блок питания нагружен постоянно, а второй готов подхватить нагрузку в случае сбоя;

Очень напоминает RAID – его отказоустойчивый уровень 1 и производительный 0.

Большинство производителей позволяют администратору выбрать необходимый режим. Например, в таком сервере HP настройка через BIOS выглядит следующим образом:

image alt text

Изображение немного устарело, так как в новых системах используется настройка через iLO, но для понимания сути ее достаточно.

Посмотрим на выдаваемую мощность пары блоков питания HP DL360 при разных режимах настройки и небольшой нагрузке. Для этого используем консольную утилиту hpasmcli.

Не обманул производитель, блоки питания выдают примерно одинаковую мощность.

И правда, при использовании режима распределения нагрузки блоки нагружены примерно одинаково. Но при включении отказоустойчивости используется только один блок питания, а второй переводится в Standby и расходует минимум энергии.

Своеобразный "спящий режим" нужен для того, чтобы избежать холодного старта при подключении резервного БП, сэкономить время и минимизировать риски выхода блока питания из строя в процессе его активизации. Как и в случае с бытовыми лампочками, при любом холодном включении образуются пиковые нагрузки на элементную базу электроцепи, что может привести к ее порче.

Настройка режимов работы у каждого производителя выполняется по-своему. Например, у Lenovo (IBM) в системах с двумя блоками питания настройка через GUI выглядит следующим образом:

image alt text

На выбор предлагаются три режима работы:

Отказоустойчивость без снижения энергопотребления – вернемся к нему позже;

Отказоустойчивость с понижением мощности;

Generic-серверы, вроде Intel и Supermicro, не всегда хорошо документированы и открытой информации о настройках режимов работы БП не оказалось. Пришлось обратиться к нашим инженерам и форумам. Оказалось, что подобные системы обычно работают они в режиме балансировки нагрузки.

Если вы плотно работали с подобными платформами и владеете другой информацией – поделитесь в комментариях, пожалуйста.

Еще интереснее обстоят дела с системами из трех и более БП.

Как и в аналогии с RAID, большее число узлов открывает более изощренные схемы использования. Например, у сервера Supermicro с тремя блоками штатно используется режим работы 2+1, то есть работают одновременно два, а третий в резерве.

В случае с четырьмя БП в Lenovo можно настроить использование блоков питания более гибко. Интерфейс даже считает показатели мощности самостоятельно:

image alt text

С точки зрения баланса производительности и надежности, подобные конфигурации из 4 БП оправданы только при использовании "прожорливых" комплектующих. В остальных случаях запас по мощности будет избыточным, а удобство и запас надежности обеспечивают 2 блока питания с разными подводами электричества.

На мой взгляд, в таких платформах интереснее вместо третьего и четвертого БП поставить резервные батареи (примеры для Supermicro и HP). Они подстрахуют от проблем с UPS и минут на 5 повысят время работы без электричества в сети. Кроме того, с подобными модулями удобнее заниматься обслуживанием железа: выдернул кабель – и спокойно перенес сервер в другой шкаф. Время работы сервера от встроенной батареи составляет около пяти минут.

Опыт инженеров Сервер Молл показывает, что блоки питания на втором месте по выходу из строя, после жестких дисков. По крайней мере, в ходе восстановления серверов эти компоненты часто меняются из-за применения в их конструкции электролитических конденсаторов.

Если к сбоям дисковой подсистемы мы привыкли и держим запасной диск наготове, то замена для системы питания встречается на полках ЗИП реже. Ситуацию в какой-то степени спасает гарантия и возможность получить замену отказавшего БП через пару дней с курьером, но Закон Мерфи со счетов сбрасывать не стоит. В моей практике был случай, когда во время ожидания замены отказавшего БП вышел из строя оставшийся. Хорошо, что на сервере ничего жизненно-важного не было.

Если оставить в стороне надежность, то остается вопрос с мощностью. Как правило, лучше взять сразу два блока питания, каждый с достаточным запасом выходной мощности. Но если бюджет таких вольностей не позволяет, то придется взвешивать потребности более детально и учитывать проседания мощности источников питания. Обратимся к руководству от HP, в котором представлен график КПД системы питания в разных конфигурациях:

image alt text

В случае низкой нагрузки машины КПД одного блока питания выше, но картина меняется, если у нас высоконагруженный сервер.

Что же будет, если один из блоков питания выйдет из строя, а мощности оставшегося не хватит?

У многих вендоров предусмотрен механизм снижения энергопотребления на случай сбоя – PowerSafe Guard у Fujitsu, Throttling у Lenovo. Использование подобных механизмов не всегда спасает ситуацию, да и существенное падение производительности порой хуже простоя.

Есть еще один нюанс: возрастает нагрузка на второй блок питания, что повышает вероятность его выхода из строя. Лучше исходить из того, что один блок питания из пары должен обеспечивать сервер целиком, хотя бы при штатных нагрузках. Разница в стоимости блоков питания разной мощности не так уж велика, поэтому стоит выбирать более производительные модели. Например, вот цены на варианты от Supermicro:

Блок питания PWS-406P-1R на 400 Ватт стоит в среднем 12 000 ?;

Цены взяты с Яндекс маркета, так что в реальности они могут быть даже ниже. Экономия 4 000 ? в ущерб отказоустойчивости выглядит так себе даже для небольшого сервера.

Современный блок питания содержит набор диагностических механизмов для контроля внутренней системы охлаждения, напряжения, силы тока и массы внутренних состояний.

Помимо автоматического отключения при перегреве, полезно иметь возможность подключить к централизованному мониторингу показатели работы подсистемы питания. Например, с их помощью можно прогнозировать выход из строя определенного БП или выявить нестабильный подвод электричества. Все это обеспечивают микроконтроллеры, внутреннюю логику которых производитель периодически совершенствует в новых обновлениях.

При всех описанных преимуществах, у решений с несколькими блоками питания есть и отрицательные стороны:

Необходимость покупать более дорогие проприетарные блоки питания. Как правило, они должны быть одинаковыми, что может вызвать проблемы с заменой для очень старых серверов;

Узким местом становится управляющий блоками питания контроллер и плата, к которой они подключаются (Power Distribution Backplane);

При малой нагрузке больший расход электроэнергии, как следствие специфического алгоритма использования;

Если у вас есть собственный негативный опыт работы с конфигурациями из нескольких блоков питания – было бы интересно почитать в комментариях.

В завершение приведу несколько полезных ссылок на калькуляторы мощности популярных вендоров:

Если вам тоже лень оценивать мощность при выборе очередного нового сервера, то эти инструменты помогут при расчете как мощности блоков питания, так и энергопотребления всего ЦОД.

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Блок питания своими руками

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Функциональная схема блока питания

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Трансформатор тороидальный | Трансформатор броневой

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

Принцип работы мостового выпрямителя

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Мостовой выпрямитель

Диодный мост

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Схема сглаживания выпрямленного напряжения

Конденсатор электролитический

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 -> 5 В, положительное напряжение

LM7912 -> 12 В, отрицательное U

Стабилизатор напряжения LM7805 | LM7809 | LM7812

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

LM7805 обозначение выводов

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Схема блока питания

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

78L05 обозначение выводов

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

LM7805 | 78L05

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

LM7805 | 78L05 схема включения

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Блок питания с отрицательным напряжением

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Компьютерные блоки питания – это очень точные и функциональные устройства. Они имеют низкую погрешность в питании устройств, входящих в состав персонального компьютера (ПК) – не более 5%. И достаточную мощность – от 250 Вт и выше.

Часто компьютерные БП используют не по назначению:

  • Они могут питать сторонние устройства.
  • БП изрядно модифицируют (улучшают охлаждение, изменяют выходные напряжения и т.п.) для получения заданного уровня тока.
  • Разбирают на запчасти для сборки собственных БП.
  • И т.д.

Но самая безумная затея – сделать блок питания ПК своими руками!

  • Во-первых, компьютерный БП – это не просто источник нескольких уровней напряжений и тока. Это устройство с обратной связью. Имеется специальный контроллер, отвечающий за управление включением и отключением питания, при особом сигнале БП переходит в дежурный режим и т.д.
  • Во-вторых, в домашних условиях сложно достичь правильной компоновки элементов и уместить схему в заданные габариты. А значит, БП с большой вероятностью будет размещён вне системного блока.
  • В-третьих, даже имея на руках детальную схему БП, её будет сложно собрать своими руками – высокая плотность элементов повышает риск ошибки, не все детали имеются в доступе (скорее всего часть из них будет снята с тех же самых БП, например, с вышедших из строя).
  • В-четвёртых, ошибка в сборке может обойтись очень дорого – стоимость сгоревшей материнской платы, как и большинства подключаемых к БП устройств (процессор, жёсткий диск и т.д.), намного выше стоимости нового БП.

Даже простейший подсчёт затрат времени и денег на закупку компонентов говорит о том, что экономического эффекта от сборки БП для ПК своими руками – нет.

Проще всего приобрести новый БП, скомпоновать несколько (если необходимо увеличить мощность) или модифицировать имеющийся (например, залив его маслом и поместив в специальный корпус для снижения шумности, для понижения температуры в корпусе и т.п. – что актуально для оверлокеров).

Если всё вышеизложенное вас не останавливает, а цель – исследование своих возможностей или детальное изучение БП, то материал ниже – для вас.

Схемы компьютерных БП

Рис. 1. Принципиальная схема БП ПК

Итак, первое, что необходимо усвоить при проектировании собственного БП – на выходе должно быть несколько уровней напряжений:

Комбинация +12 и -12 В может питать цепи напряжением в 24 В.

К примеру, блок питания мощностью 350 Вт обеспечивает следующую силу тока на каналах питания:

+5 В – до 32 А (до 160 Вт);

+12 В – до 16А (до 192 Вт);

Если попытаться измерить показатели напряжения на реальном БП без нагрузки, они могут сильно отличаться от заявленных. Кроме того, некоторые блоки питания способны блокировать напряжение, если нагрузка отключена.

Наиболее простой в сборке можно назвать блоки ATX (старого образца с минимумом микроконтроллеров). Типовая схема выглядит следующим образом.

Рис. 2. Типовая схема блока ATX

Рис. 3. Типовая схема блока ATX

Ядром её служит таймер, выполняющий роль генератора частоты.

Чтобы был понятен принцип работы с напряжением, можно изучить следующую схему.

Рис. 4. Схема принципа работы БП

Она соответствует большинству импульсных источников питания. Переменное напряжение преобразовывается в постоянное, затем генератор импульсов преобразует ток в переменный с высокой частотой. Теперь на базе ВЧ сигнала легко сформировать нужное постоянное напряжение заданного уровня или даже нескольких уровней.

Такой подход позволяет избежать применения тяжёлых и габаритных трансформаторов, но имеет свои нюансы:

  • Возможны ВЧ-помехи (поэтому системный блок ПК включают в сеть через сетевой фильтр);
  • Для БП опасна работа без нагрузки.

Если упомянутую блок-схему наложить на принципиальную схему БП АТХ, то получится следующее.

Выше обозначены основные блоки (легко соотносятся с блок-схемой, обозначенной выше):

1. Выпрямитель сетевого напряжения

2. Генератор частоты

4. Трансформаторный блок

5. Блок выпрямления тока

Из-за того, что первичное выпрямление сетевого напряжения с диодным мостом и конденсатором в роли простейшего фильтра обеспечивало пульсирующий ток, этот подход был пересмотрен.

Более качественный сигнал формируется с применением активного корректора мощности.

Новые поколения компьютерных БП собираются по следующим схемам.

Рис. 6. Схема БП ПК

Они получаются ещё компактнее и надёжнее предшественников – ATX.

Даже собрав БП своими руками, вы не сможете просто так запитать все необходимые узлы и устройства.

Читайте также: