Простой повышающий преобразователь из зу своими руками

Добавил пользователь Morpheus
Обновлено: 15.09.2024

54684864

Инвертор 12V/220V вещь на хозяйстве нужная. Иногда просто необходимая: сеть, допустим, пропала, а телефон разряжен и в холодильнике мясо. Спрос определяет предложение: за готовые модели на 1кВт и более, от которых можно запитывать любые электроприборы, придется выложить где-то от $150. Возможно, более $300. Однако сделать преобразователь напряжения своими руками в наше время дело доступное каждому, кто умеет паять: собрать его из готового набора компонент обойдется втрое-вчетверо дешевле + немного работы и металла из подручного хлама. Если есть зарядное устройство для автомобильных аккумуляторных батарей (АКБ), можно уложиться вообще в 300-500 руб. А если имеются еще и начальные радиолюбительские навыки, то, порывшись в загашниках, вполне возможно сделать инвертор 12V DC/220V AC 50Hz на 500-1200 Вт вовсе даром. Рассмотрим возможные варианты.

Варианты: глобально

Преобразователь напряжения 12-220 В для питания нагрузки до 1000 Вт и более в целом можно сделать самостоятельно такими способами (в порядке повышения затрат):

Из готового модуля

Готовые модули инверторов напряжения 12/220 В

Готовые модули инверторов напряжения 12/220 В

Напр., в наборе (модуле) 2 ключа (их видно, они торчат из платы, см. слева на рис.); модули с ключами на радиаторе (справа на рис.) стоят дороже и рассчитаны на определенную, как правило, не очень большую мощность. Кулера нет, мощность нужна 1,5 кВт. Значит, нужен радиатор от 150 кв. см. Кроме него еще установочные комплекты для ключей: изолирующие теплопроводящие прокладки и фурнитура под крепежные винты – изолирующие чашечки и шайбы. Если модуль с теплозащитой (между ключами будет торчать еще какая-то фитюлька – термодатчик), то немного термопасты для приклеивания его к радиатору. Провода – само собой, см. далее.

Из ИБП (UPS)

Батарея и мощность

Автолюбители знают: гонял стартер 20 мин – покупай новый аккумулятор. Правда, в новых машинах есть ограничители времени его работы, так что, возможно, и не знают. И точно не все знают, что стартер легковушки, раскрутившись, берет ток ок. 75 А (в течение 0,1-0,2 с при запуске – до 600 А). Простейший расчет – и выходит, что, если в инверторе нет автоматики, ограничивающей разряд батареи, то наша за 15 мин сядет полностью. Так что выбирайте или конструируйте свой преобразователь с учетом возможностей наличной АКБ.

Примечание: из этого следует огромное преимущество преобразователей 12/220 в на основе компьютерных ИБП – их контроллер не даст полностью посадить батарею.

Ресурс кислотных АКБ заметно не уменьшается, если они разряжаются 2-х часовым током (12 А для 60 А/ч, 24 А для 120 А/ч и 42 А для 210 А/ч). С учетом КПД преобразования это дает допустимую долговременную мощность нагрузки в прим. 120 Вт, 230 Вт и 400 Вт соотв. Для 10 мин. нагрузки (напр., для запитки электроинструмента) она может быть увеличена в 2,5 раза, но после этого АБК должна отдохнуть не менее 20 мин.

В целом итог получается не совсем уж плохой. Из обычного бытового электроинструмента только болгарка может брать 1000-1300 Вт. Остальные, как правило, обходятся мощностью до 400 Вт, а шуруповерты до 250 Вт. Холодильник от АКБ 12 В 60 А/ч через инвертор проработает 1,5-5 час; вполне достаточно, чтобы принять необходимые меры. Поэтому делать преобразователь на 1кВт для батареи 60 А/ч смысл имеет.

Что будет на выходе?

Преобразователи напряжения ради уменьшения массогабаритов устройства за редкими исключениями (см. далее) работают на повышенных частотах от сотен Гц до единиц и десятков кГц. Ток такой частоты не примет никакой потребитель, а потери его энергии в обычной проводке будут огромны. Поэтому инверторы 12-200 строятся под выходное напряжение след. видов:

  • Постоянное выпрямленное 220 В (220V AC). Пригодны для питания телефонных зарядок, большинства источников питания (ИП) планшетов, ламп накаливания, люминесцентных экономок и светодиодных. На мощность от 150-250 Вт отлично подойдут для ручного электроинструмента: потребляемая им мощность на постоянном токе немного снижается, а крутящий момент возрастает. Непригодны для импульсных блоков питания (ИБП) телевизоров, компьютеров, ноутбуков, микроволновок и т.п. мощностью более 40-50 Вт: в таких обязательно есть т. наз. пусковой узел, для нормальной работы которого сетевое напряжение должно периодически проходить через ноль. Непригодны и опасны для приборов с силовыми трансформаторами на железе и электромоторами переменного тока: стационарного электроинструмента, холодильников, кондиционеров, большей части Hi-Fi аудио, кухонных комбайнов, некоторых пылесосов, кофеварок, кофемолок и микроволновок (для последних – из-за наличия мотора вращения стола).
  • Модифицированное синусоидальное (см. далее) – пригодны для любых потребителей, кроме Hi-Fi аудио с ИБП, прочих устройств с ИБП от 40-50 Вт (см. выше) и, часто локальных охранных систем, домашних метеостанций и т.п. с чувствительными аналоговыми датчиками.
  • Чистое синусоидальное – пригодны без ограничений, кроме как по мощности, для любых потребителей электроэнергии.

Синус или псевдосинус?

С целью повышения экономичности преобразование напряжения осуществляется не только на повышенных частотах, но и разнополярными импульсами. Однако запитывать очень многие приборы-потребители последовательностью разнополярных прямоугольных импульсов (т. наз. меандром) нельзя: большие выбросы на фронтах меандра при хоть чуть-чуть реактивной нагрузке приведут к большим потерям энергии и могут вызвать неисправность потребителя. Однако проектировать преобразователь на синусодальный ток тоже нельзя – КПД не превысит прим. 0,6.

Преобразование постоянного напряжения в модифицированную и чистую синусоиду

Преобразование постоянного напряжения в модифицированную и чистую синусоиду

Однако приборы с капризными аналоговыми узлами и ИБП запускать от модифицированной синусоиды нежелательно. Последние – крайне нежелательно. Дело в том, что средняя площадка модифицированной синусоиды не чистый ноль напряжения. Узел запуска ИБП от модифицированной синусоиды срабатывает нечетко и весь ИБП может не выйти из режима запуска в рабочий. Пользователь это видит сначала как безобразные глюки, а потом из девайса идет дым, как в анекдоте. Поэтому приборы в ИБП нужно запитывать от инверторов типа Чистый Синус.

Делаем инвертор сами

Приборы для контроля частоты сети электропитания

Приборы для контроля частоты сети электропитания

Стоят тот и другой недорого, продаются в интернете, а в больших городах в электротехнических спецмагазинах. Старый резонансный частотомер можно найти на на железном базаре, а тот или другой после наладки инвертора очень даже подойдут для контроля частоты сети в доме – счетчик на подключение их к сети не реагирует.

50 Гц от компьютера

Видео: простой преобразователь 12-220 из компьютерного БП


Ключи

Допустим, компьютерного ИБП нет или нужна мощность побольше. Тогда важное значение приобретает выбор ключевых элементов: они должны коммутировать большие токи с наименьшими потерями на переключение, быть надежными и доступными по цене. В этом отношении биполярные транзисторы и тиристоры в данной сфере применения уверенно уходят в прошлое.

Лучшие из мощных полевиков для преобразователей напряжения – с изолированным затвором и индуцированным каналом (MOSFET), напр. IFR3205, слева на рис.:

Мощные транзисторы для преобразователей напряжения

Мощные транзисторы для преобразователей напряжения

Благодаря ничтожной мощности переключения КПД инвертора с выходом DC на таких транзисторах может достигать 0,95, а с выходом AC 50 Гц 0,85-0,87. Аналоги MOSFET со встроенным каналом, напр. IFRZ44, дают КПД пониже, но стоят гораздо дешевле. Пара тех или других позволяет довести мощность в нагрузке до прим. 600 Вт; те и другие без проблем запараллеливаются (справа на рис.), что позволяет строить инверторы на мощность до 3 кВт.

Примечание: мощность потерь переключения ключей со встроенным каналом при работе на существенно реактивную нагрузку (напр., асинхронный электродвигатель) может достигать 1,5 Вт на ключ. Ключи с индуцированным каналом от этого недостатка свободны.

TL494

Третий элемент, который позволил довести преобразователи напряжения до теперешнего состояния – специализированная микросхема TL494 и ее аналоги. Все они представляют собой контроллер широтно-импульсной модуляции (ШИМ), формирующий на выходах сигнал модифицированной синусоиды. Выходы разнополярные, что позволяет управлять парами ключей. Опорная частота преобразования задается одной RC цепью, параметры которой можно менять в широких пределах.

Когда хватит постоянки

Круг потребителей тока 220 В DC ограничен, но как раз у них потребность в автономном электропитании возникает не только в аварийных ситуациях. Напр., при работе электроинструментом на выезде либо в дальнем углу своего же участка. Или присутствует всегда, скажем, у дежурного освещения входа в дом, прихожей, коридора, придомовой территории от солнечной батареи, днем подзаряжающей АКБ. Третий типичный случай – зарядка телефона на ходу от прикуривателя. Здесь мощность на выходе нужна совсем маленькая, так что инвертор может быть выполнен всего на 1 транзисторе по схеме релаксационного генератора, см. след. ролик.

Видео: повышающий преобразователь на одном транзисторе

Пример схемы с внешними времязадающими элементами дан на поз. 1 рис.:

Схемы простых преобразователей напряжения 12-200 В

Схемы простых преобразователей напряжения 12-200 В

Ошибочно выбранный магнитопровод трансформатора маломощного преобразователя напряжения

Ошибочно выбранный магнитопровод трансформатора маломощного преобразователя напряжения

Порядок расчета данного инвертора дан в скане на рис.:

Ключевые величины в нем – частота преобразования и рабочая индукция в магнитопроводе. Частоту преобразования выбирают исходя из материала наличного сердечника и требуемой мощности:

Примечание: если в наличии есть стальной магнитопровод заведомо завышенного сечения, не выжимайте из него мощность! Пусть лучше индукция будет меньше – КПД преобразователя возрастет, а форма выходного напряжения улучшится.

Выпрямление

50 гц? Это очень просто!

Простой инвертор на 50 Гц (поз. 4 рис. выше со схемами) интересная конструкция. У некоторых видов типовых трансформаторов питания собственная постоянная времени близка к 10 мс, т.е. половине периода 50 Гц. Подкорректировав ее времязадающими резисторами, которые будут одновременно и ограничителями тока управления ключей, можно получить на выходе сразу сглаженный меандр 50 Гц без сложных схем формирования. Подойдут трансформаторы ТП, ТПП, ТН на 50-120 Вт, но не всякие. Возможно, придется изменить номиналы резисторов и/или включить параллельно им конденсаторы на 1-22 нФ. Если частота преобразования все равно далеко от 50 Гц, разбирать и перематывать трансформатор бесполезно: склеенный ферромагнитным клеем магнитопровод распушится, и параметры трансформатора резко ухудшатся.

Этот инвертор – дачный преобразователь выходного дня. Аккумулятор машины он не посадит по тем же причинам, что и предыдущий. Но его хватит на освещение домика с верандой светодиодными лампами и телевизор или вибрационный насос в скважине. Частота преобразования налаженного инвертора при изменениях тока нагрузки от 0 до максимального не выходит за пределы технормы для сетей электропитания.

DC от микросхемы

КПД описанных преобразователей не превышает 0,8, а частота в зависимости от тока нагрузки заметно плавает. Предельная мощность нагрузки менее 400 Вт, так что пришла пора вспомнить о современных схемных решениях.

Схема простого преобразователя 12 В DC/ 220 В DC на 500-600 Вт дана на рис.:

Схема преобразователя 12-220 В DC 1000 Вт

Схема преобразователя 12-220 В DC 1000 Вт

Основное его назначение – питание ручного электроинструмента. К качеству подводимого напряжения такая нагрузка не требовательна, поэтому ключи взяты подешевле; подойдут также IFRZ46, 48. Трансформатор мотается на феррите сечением 2-2,5 кв. см; подойдет сердечник силового трансформатора от компьютерного ИБП. Первичная обмотка – 2х5 витков жгута из 5-6 обмоточных проводов диаметром по меди 0,7-0,8 мм (см. ниже); вторичная – 80 витков такого же провода. Налаживание не требуется, но контроля разряда батареи нет, так что в процессе работы нужно прицепить к ее клеммам мультиметр и не забывать на него поглядывать (то же касается и всех прочих самодельных инверторов напряжения). Если напряжение упало до 10,8 В (1,8 В на банку) – стоп, выключаемся! Упало до1,75 В на банку (10,5 В вся батарея) – это уже пошла сульфатация!

Как мотать трансформатор на кольце

  • Изолируют магнитопровод и с помощью намоточного челнока наматывают на него вторичную повышающую обмотку, укладывая витки как можно плотнее, поз. 1 на рис.:

Намотка трансформатора преобрзователя напряжения на ферритовом кольце

Намотка трансформатора преобрзователя напряжения на ферритовом кольце

Примечание: на электрических принципиальных схемах начала обмоток, если это имеет значение, обозначаются точкой.

50 Гц сглаженные

  • Первоначально определенная величина рабочей индукции делится на 1,1 и применяется во всех дальнейших расчетах. Так нужно, чтобы учесть т. наз. коэффициент формы несинусоидального напряжения Кф; у синусоиды Кф=1.
  • Повышающая обмотка рассчитывается сначала как сетевая на 220 В для заданной мощности (или определенной по параметрам магнитопровода и величине рабочей индукции). Затем найденное количество ее витков умножается на 1,08 для мощности до 150 Вт, на 1,05 для мощностей 150-400 Вт и на 1,02 для мощностей 400-1300 Вт.
  • Половина низковольтной обмотки рассчитывается как вторичная на напряжение 14,5 В под ключи биполярные или со встроенным каналом и на 13,2 В для ключей с индуцированным каналом.

Примеры схемных решений преобразователей 12-200 В 50 Гц с разделительным трансформатором даны на рис.:

Схемы преобразователей напряжения 12-220 В 50 Гц на 500-1000 Вт

Схемы преобразователей напряжения 12-220 В 50 Гц на 500-1000 Вт

Инвертор 12-220 В 50 Гц с задающим генератором на TL494 (справа на рис.) частоту держит железно во всех мыслимых немыслимых условиях эксплуатации. Для более эффективного сглаживания псевдосинусоиды используется явление т. наз. безразличного резонанса, при котором фазовые соотношения токов и напряжений в колебательном контуре становятся такими же, как при остром резонансе, но их амплитуды заметно не увеличиваются. Технически это решается просто: к повышающей обмотке подключают сглаживающий конденсатор, значение емкости которого подбирают по наилучшей форме тока (не напряжения!) под нагрузкой. Для контроля формы тока в цепь нагрузки на мощность 0,03-0,1 от номинальной включают резистор на 0,1-0,5 Ом, к которому и подключают осциллограф с закрытым входом. Сглаживающая емкость не уменьшает КПД инвертора, но пользоваться для настройки компьютерными программами симуляции НЧ осциллографа нельзя, т.к. вход звуковой карты, которая в них используется, не рассчитан на амплитуду в 220х1,4 = 310 В! Ключи и мощности такие же, как в пред. случае.

Более совершенная схема преобразователя 12-200 В 50 Гц дана на рис.:

Схема усовершенствованногопреобразователя 12-200 В 50 Гц

Схема усовершенствованногопреобразователя 12-200 В 50 Гц

А нельзя ли без трансформатора?

Да, и такое решение нередко применяется в фирменных преобразователях. Это – электрический мост из ключей на высоковольтных силовых полевых транзисторах с напряжением пробоя от 400 В и током стока более 5 А. Подойдут из первичных цепей компьютерных ИБП, а из старого хлама – КП904 и т.п.

Мост запитывается постоянкой 220 В DC от несложного инвертора 12-220 с выпрямлением. Плечи моста открываются парами наперекрест поочередно, и ток в нагрузке, включенной в диагональ моста, меняет направление; цепи управления всех ключей гальванически разделены. В промышленных конструкциях ключи управляются от спец. ИМС с развязкой оптопарами, но в любительских условиях то и другое можно заменить дополнительным маломощным инвертором 12 В DC – 12 В 50 Гц, работающим на маленький трансформатор на железе, см. рис. Магнитопровод для него можно взять от китайского базарного маломощного трансформатора питания. За счет его электрической инерции качество выходного напряжения получается даже лучше, чем модифицированная синусоида.

Схема получения 220 В 50 Гц от преобразователя напряжения без мощного трансформатора на железе

Схема получения 220 В 50 Гц от преобразователя напряжения без мощного трансформатора на железе

Для того чтобы сделать повышающий преобразователь напряжения своими руками объединенный с понижающим преобразователем напряжения своими руками, потребуется внести некоторые усовершенствования и такие элементы, как:

  • высоковольтное преобразовательное устройство до 400 килоВольт;
  • модуль для повышения;
  • низковольтное устройство преобразования 5Вольт на 1,5Ампер;
  • повышающий на 500Ватт преобразователь;
  • набор для регулирования напряжений.
















Компактное устройство получается большой мощности с однотактным рабочим режимом. Обычно подобные типовые устройства способны выполнять только одну функцию. Повышать или повышать напряжение. Универсальное авторское решение способно совмещать эти две особенности.


Для тестирования самостоятельно выполненных приборов применяются разнообразные источники подаваемого питания. Устройства можно заряжать и применять для разного рода задач.


Радиолюбитель

Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы: – понижающие, повышающие, инвертирующие; – стабилизированные, нестабилизированные; – гальванически изолированные, неизолированные; – с узким и широким диапазоном входных напряжений. Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.

Первая схема. Нестабилизированный транзисторный преобразователь:


Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Вторая схема. Стабилизированный транзисторный преобразователь напряжения:


Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.

Третья схема. Нестабилизированный преобразователь напряжения на основе мультивибратора:


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Четвертая схема. Преобразователь на специализированной микросхеме: Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.

Пятая схема. Нестабилизированный двухступенчатый умножитель напряжения:


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Шестая схема. Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM:


Типовая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

Седьмая схема. Два напряжения от одного источника питания:


Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

Восьмая схема. Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM: Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.

Девятая схема. Импульсный понижающий стабилизатор на микросхеме фирмы TEXAS:


Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Десятая схема. Интегральный инвертор напряжения на микросхеме фирмы MAXIM: Интегральный инвертор напряжения, КПД – 98%.

Одиннадцатая схема. Два изолированных преобразователя на микросхемах фирмы YCL Elektronics: Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Двенадцатая схема. Двухполярный стабилизированный преобразователь напряжения на микросхеме фирмы National Semiconductor:


Индуктивность первичной обмотки трансформатора Т1 – 22 мкГн, отношение витков первичной обмотки к каждой вторичной – 1:2.5.

Тринадцатая схема. Стабилизированный повышающий преобразователь на микросхеме фирмы MAXIM:


Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Четырнадцатая схема Нестандартное применение микросхемы фирмы MAXIM:


Эта микросхема обычно служит драйвером RS-232. Умножение напряжения получается с коэффициентом 1,6…1,8.








Устройство для зарядки гаджетов


Поэтому универсальный небольшой инвертор просто необходим. Собрать его можно благодаря продукции AKA KASYAN. Небольшие емкости дают требуемый ток. 5А. Процесс изготовления полностью изложен на специализированных сайтах.


Как сделать коптильню горячего копчения своими руками: чертежи, размеры, выбор материала, фото готовых вариантов


Как сделать кормушку для кур своими руками: пошаговая инструкция с фото и описанием


Печь на отработке своими руками: подробная инструкция, как сделать печь с максимальной эффективностью

Распространенные схемы

Простой импульсный преобразователь

Схема этого устройства очень проста, а большинство деталей могут быть извлечены из ненужного блока питания компьютера. Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц. Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.


Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами. Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя. Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.

Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.

Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.

Фото самодельного преобразователя напряжения













Какие бывают преобразователи

В современно мире существует множество видов преобразователей тока, как небольших для минимальных потребностей, так и крупных способных обеспечить энергией несколько электроприборов.


Для самых простых нужд можно использовать преобразователи работающие от прикуривателя в автомобиле. Работу холодильника они конечно обеспечить не смогут, но вот радио или зарядку телефона, планшета, ноутбука вполне осилят.










Благодаря ШИМ контролерам преобразователи заметно шагнули вперёд. Вырос коэффициент полезного действия, а форма тока приблизилась к привычным для приборов форме чистого синуса. А максимальная мощность выросла до нескольких кило ватт.


Конечно всё это касается лишь дорогих и массивных преобразователей. Но и более простые, тоже не стояли на месте и улучшали свои характеристики.


Время работы будет ограниченно мощностью и ёмкостью аккумулятора. И если вы на долго отправляетесь в путешествие, то не следует слишком сильно нагружать аккумулятор и ограничивать себя в потреблении электроэнергии.


Для отдыха не природе лучше всего подойдёт компактный маломощный преобразователь. Его вполне хватит для бытовых нужд в походе.


Но не стоит забывать, что простые инверторы выдают не чистый синус тока, а практически прямоугольный, что ведёт за собой ограничения.



Что нужно знать при выборе ветрогенератора


Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!

Не каждый бытовой прибор сможет работать с такой формой тока и может вовсе прийти в негодность. Поэтому следует внимательно подходить к выбору приборов для поездок на природу.










  • Автомобильный;
  • Компактный;
  • Стационарный тип.


Также нельзя забывать, что чем выше нагрузка на преобразователь, тем ниже его КПД. И если в этом нет необходимости, нагружать его следует минимально, чтобы не расходовать драгоценную энергию впустую.

Повышающие DC-DC преобразователи находят широкое применение в электронике. Они могут применяться как отдельные модули питания конкретных объектов, так и могут входить в часть электрической схемы. Например, можно поднять напряжение пятивольтного аккумулятора и питать от него через повышающий преобразователь нагрузку напряжением 12В (усилитель, лампу, реле и т.д.). Еще пример, в некоторых охранно-пожарных сигнализациях на линиях контроля около 30В постоянного тока, а сам блок контроля и управления работает от 12В, поэтому в последние внедряют повышающие преобразователи и они являются частью схемы блоков контроля и управления.

Микросхема МС34063 представляет собой импульсный конвертор, поэтому она обладает высокой эффективностью (КПД) и имеет три схемы включения (инверторную, повышающую и понижающую). В этой статье будет описан исключительно повышающий (Step Up) вариант.

Повышающий DC-DC

МС34063 выполняется в корпусах DIP-8 и SO-8. Расположение выводов показано ниже.


Основные технические параметры MC34063.

Выходное напряжение ………. от 1.25 до 38 Вольт

Максимальный ток на выходе ………. 1.5 Ампер

Максимальная частота ………. 100кГц

Максимальный ток на выходе это пиковый ток на внутреннем транзисторе и он значительно больше тока нагрузки, поэтому не стоит надеяться, что преобразователь будет держать 1.5A на выходе. Ниже представлен калькулятор, который позволит правильно посчитать ток.

Другую интересующую информацию по параметрам и внутреннему устройству микросхемы можно найти в Datasheet.

Схема повышающего DC-DC преобразователя на MC34063.

Повышающий преобразователь MC34063 схема

Опишу работу простыми словами. В микросхеме MC34063 есть генератор, генерирующий импульсы с определенной частотой. Генератор, взаимодействуя с другими узлами, управляет выходным транзистором, коллектор которого соединен с выводом 1, а эмиттер с выводом 2.

Когда выходной транзистор открыт, дроссель L1 заряжается входным напряжением через резистор R3.

Работа MC34063

После закрытия выходного транзистора, дроссель отключается от земли и в этот момент происходит его разряд (самоиндукция). Энергия дросселя уже с противоположной полярностью и большая по силе поступает на диод VD1. После выпрямления напряжения диодом, оно поступает на выход схемы, накапливаясь в конденсаторе C3. Помимо накопления, данный конденсатор сглаживает пульсации.

Работа mc34063

Схема конвертирует напряжение постоянного тока с 5В до 12В. Чуть ниже пойдёт речь об изменении номиналов элементов под нужные напряжения.

Резисторами R1 и R2 задается напряжение на выходе. Резистор R3 ограничивает выходной ток до минимума, при превышении определенной мощности.

Конденсатор C2 задает частоту преобразования.

Повышающий DC-DC преобразователь на mc34063
Step-Up mc34063

Элементы.

Все резисторы мощностью 0.25Вт кроме R3 (0.5-1 Ватт).

В качестве L1 я взял готовый дроссель на 470мкГн, намотанный медным эмалевым проводом на гантель из феррита и отмотал три слоя, уменьшив тем самым индуктивность до 75мкГн (индуктивность больше расчетной допускается, а меньше нельзя).

Дроссель должен выдерживать пиковый выходной ток (в моем случае 1.5А).

Также можно взять кольцо из порошкового железа (жёлтого цвета) наружным диаметром 18мм, внутренним 8мм, толщиной 8мм и намотать медным проводом (диаметром 0.6мм и более) 30-40 витков (при 30 витках индуктивность получилась 55мкГн). Кольцо можно взять больше моего, но меньше не рекомендую.

Работа MC34063 UP

Диод VD1- Шоттки, либо быстродействующий (типа SF, UF, MUR, HER и т.д.) на ток не менее 1А и обратное напряжение в два раза больше выходного (в моем случае 40В).

У микросхемы МС34063 есть отечественный аналог КР1156ЕУ5, они полностью взаимозаменяемы.

Расчет преобразователя на MC34063 под другое напряжение и ток.

Калькулятор считает минимальную индуктивность, поэтому ее можно брать с положительным запасом (произойдут незначительные изменения лишь в КПД).

Пару слов…

Расчетная частота (50кГц в моем случае) является минимальной и может значительно отличаться и изменяться в зависимости от входного напряжения и тока нагрузки.

При выходном токе 200мА происходит достаточно сильный нагрев микросхемы MC34063, и работать в таком режиме долгое время возможно не сможет.

Step-Up DC-DC

Рекомендую использовать MC34063 в тех случаях, когда нужно питать слаботочную часть схемы или отдельную нагрузку током до 150-250мА, а для нагрузки 3-5А предлагаю обратить внимание на повышающие DC-DC преобразователи, построенные на базе UC3843 и UC3845.

Печатная плата повышающего преобразователя на MC34063 (из 5В в 12В) СКАЧАТЬ

Zivert - CRY | Премьера клипа

04:24

LOBODA - Americano (Премьера сингла, 2021)

03:31

Баста – Любовь и страх (feat. Дворецкая)

05:41

Ozoda - Esla Meni (Off?c?al Cl?p 2021)

05:02

Султан Лагучев - Cкучает осень (премьера 2021)

02:29

Oliver Tree & Little Big - The Internet [Music Video]

03:36

Coldplay X BTS - My Universe (Official Video)

04:43

Читайте также: