Прибор для измерения электромагнитного поля своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 10.09.2024

Индикаторы электрических полей могут быть использованы для индивидуальной защиты электромонтеров, при поиске мест повреждений электрических сетей.

С их помощью определяется наличие электростатических зарядов в полупроводниковом, текстильном производствах, хранилищах легковоспламеняющихся жидкостей.

При поиске источников магнитных полей, определении их конфигурации и исследовании полей рассеяния трансформаторов, дросселей и электродвигателей не обойтись без индикаторов магнитных полей.

Индикатор высокочастотных излучений

Схема индикатора высокочастотных излучений показана на рис. 1. Сигнал с антенны попадает на детектор, выполненный на германиевом диоде. Далее через Г-образный LC-фильтр сигнал поступает на базу транзистора, в коллекторную цепь которого включен микроамперметр. По нему и определяется мощность высокочастотных излучений.

Схема индикатора высокочастотных излучений

Рис. 1. Схема индикатора высокочастотных излучений.

Индикатор низкочастотных электрических полей

Для индикации низкочастотных электрических полей используют индикаторы с входным каскадом на полевом транзисторе (рис. 2 - 7). Первый из них (рис. 20.2) выполнен на основе мультивибратора [ВРЛ 80-28, Р 8/91-76].

Схема индикатора низкочастотных электрических полей на основе мультивибратора

Рис. 2. Схема индикатора низкочастотных электрических полей на основе мультивибратора.

Канал полевого транзистора является управляемым элементом, сопротивление которого зависит от величины контролируемого электрического поля.

К затвору транзистора подключена антенна. При внесении индикатора в электрическое поле, сопротивление исток — сток полевого транзистора возрастает, и мультивибратор включается.

В телефонном капсюле раздается звуковой сигнал, частота которого зависит от напряженности электрического поля.

Индикаторы для поиска неисправностей в новогодних электрических гирляндах

Схема индикатора для поиска неисправностей в новогодних электрических гирляндах

Рис. 3. Схема индикатора для поиска неисправностей в новогодних электрических гирляндах.

Индикатор (рис. 3) в целом представляет собой резистор с управляемым сопротивлением. Роль такого сопротивления опять же играет канал сток — исток полевого транзистора, дополненного двухкаскадным усилителем постоянного тока.

Индикатор (рис. 4) выполнен по схеме управляемого низкочастотного генератора. Он содержит пороговое устройство, усилитель и детектор сигнала, наведенного в антенне переменным электрическим полем.

Индикатор НЧ электрических полей по схеме управляемого низкочастотного генератора

Рис. 4. Индикатор НЧ электрических полей по схеме управляемого низкочастотного генератора.

Все эти функции выполняет один транзистор — VT1. На транзисторах VT2 и VT3 собран генератор низкой частоты, работающий в ждущем режиме. Как только антенну устройства приближают к источнику электрического поля, транзистор VT1 включает звуковой генератор.

Индикатор для поиска скрытой проводки

Индикатор электрического поля (рис. 5) предназначен для поиска скрытой проводки, электрических цепей, находящихся под напряжением, индикации приближения к зоне высоковольтных проводов, наличия переменных или постоянных электрических полей [РаЭ 8/00-15].

Схемы индикаторов электрических и магнитных полей

Рис. 5. Схема простого индикатора для поиска скрытой проводки.

В устройстве использован заторможенный генератор светозвуковых импульсов, выполненный на аналоге инжекционно-по-левого транзистора (VT2, VT3).

При отсутствии электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 невелико, транзистор VT3 закрыт, генерация отсутствует.

Ток, потребляемый устройством, составляет единицы, десятки мкА. При наличии постоянного или переменного электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 возрастает, и устройство начинает вырабатывать светозвуковые сигналы.

Так, если в качестве антенны использован вывод затвора транзистора VT1, индикатор реагирует на приближение сетевого провода на расстояние около 25 мм.

Потенциометром R3 регулируется чувствительность, резистор R1 задает длительность светозвуковой посылки, конденсатор С1 — частоту их следования, а С2 определяет тембр звукового сигнала.

Для повышения чувствительности в качестве антенны может быть использован отрезок изолированного провода или телескопическая антенна. Для защиты транзистора VT1 от пробоя параллельно переходу затвор — исток стоит подключить стабилитрон или высокоомный резистор.

Индикатор электрических и магнитных полей

Индикатор электрических и магнитных полей (рис. 6) содержит релаксационный генератор импульсов. Он выполнен на биполярном лавинном транзисторе (транзистор микросхемы К101КТ1А, управляемый электронным ключом на полевом транзисторе типа КП103Г), к затвору которого подключена антенна.

Схема индикатора электрических и магнитных полей

Рис. 6. Схема индикатора электрических и магнитных полей.

Для задания рабочей точки генератора (срыв генерации в отсутствии индицируемых электрических полей) используют резисторы R1 и R2. Генератор импульсов через конденсатор С1 нагружен на высокоомные головные телефоны.

При наличии переменного электрического поля (или перемещении предметов, несущих электростатические заряды) на антенне и, соответственно, затворе полевого транзистора появляется сигнал переменного тока, что приводит к изменению электрического сопротивления перехода сток — исток с частотой модуляции.

В соответствии с этим релаксационный генератор начинает генерировать пачки модулированных импульсов, а в головных телефонах будет прослушиваться звуковой сигнал.

Чувствительность прибора (дальность обнаружения токонесущего провода сети 220 В 50 Гц) составляет 15. 20 см. В качестве антенны использован стальной штырь 300x3 мм. При напряжении питания 9 В ток, потребляемый индикатором в режиме молчания, составляет 100 мкА, в рабочем режиме — 20 мкА.

Индикатор магнитных полей (рис. 6) выполнен на втором транзисторе микросхемы. Нагрузкой второго генератора является высокоомный головной телефон.

В режиме индикации переменного магнитного поля напряжение на управляющем электроде (базе) лавинного транзистора периодически изменяется, изменяется также и напряжение лавинного пробоя коллекторного перехода и, в связи с этим, частота и продолжительность генерации.

Индикатор на основе делителя напряжения

Индикатор (рис. 7) изготовлен на основе делителя напряжения, одним из элементов которого является полевой транзистор VT1, сопротивление перехода сток — исток которого определяется потенциалом управляющего электрода (затвора) с подключенной к нему антенной [Рк 6/00-19].

Индикатор электрополей на основе делителя напряжения

Рис. 7. Индикатор электрополей на основе делителя напряжения.

К резистивному делителю напряжения подключен релаксационный генератор импульсов на лавинном транзисторе VT2, работающий в ждущем режиме. Уровень начального напряжения (порог срабатывания), подаваемого на релаксационный генератор импульсов, устанавливается потенциометром R1.

Для предотвращения пробоя управляющего перехода полевого транзистора в схему введена защита (при отключении источника питания цепь затвор — исток закорочена).

Повышение уровня громкости звукового сигнала достигается введением усилителя на биполярном транзисторе VT3. В качестве нагрузки выходного транзистора VT3 можно использовать низкоомный телефонный капсюль.

В этом случае надобность в использовании элементов VT3, R4, С2 отпадает. Разъем, в который включается телефон, для снижения габаритов устройства, может одновременно служить выключателем питания.

При отсутствии входного сигнала сопротивление перехода сток — исток полевого транзистора составляет несколько сотен Ом, и напряжение, снимаемое с движка потенциометра на питание релаксационного генератора импульсов, мало.

При появлении сигнала на управляющем электроде полевого транзистора сопротивление перехода сток — исток последнего возрастает пропорционально уровню входного сигнала до единиц, сотен кОм.

Это приводит к увеличению напряжения, подаваемого на релаксационный генератор импульсов до величины, достаточной для возникновения колебаний, частота которых определяется произведением R4C1.

Потребляемый устройством ток при отсутствии сигнала — 0,6 мА, в режиме индикации — 0,2. 0,3 мА. Дальность обнаружения токонесущего провода сети 220 В 50 Гц при длине штыревой антенны 10 см составляет 10. 100 см.

Индикатор высокочастотного электрического поля

Индикатор высокочастотного электрического поля (рис. 20.8) [МК 2/86-13] отличается от аналога (рис. 1) тем, что его выходная часть выполнена по мостовой схеме, имеющей повышенную чувствительность.

Схема индикатора высокочастотного электрического поля

Рис. 8. Схема индикатора высокочастотного электрического поля.

Резистор R1 предназначен для балансировки схемы (установки стрелки прибора на ноль).

Индикатор сетевого напряжения на ждущем мультивибраторе

Схемы индикаторов электрических и магнитных полей

Рис. 9. Схема индикатора сетевого напряжения на ждущем мультивибраторе.

Индикаторы магнитных полей с индуктивными датчиками

Индикаторы магнитных полей по схемам, представленным на рис. 10 - 13, имеют индуктивные датчики, в качестве которых может быть использован телефонный капсюль без мембраны, либо многовитковая катушка индуктивности с железным сердечником.

Схема индикатора магнитных полей с индуктивным датчиком

Рис. 10. Схема индикатора магнитных полей с индуктивным датчиком.

Индикатор (рис. 10) выполнен по схеме радиоприемника 2-V-0. Он содержит датчик, двухкаскадный усилитель, детектор с удвоением напряжения и показывающий прибор.

Индикаторы (рис. 11, 12) имеют светодиодную индикацию и предназначены для качественной индикации магнитных полей [Р 8/91-83; Р 3/85-49].

Схема индикатора магнитных полей со светодиодной индикацией и телефоном в качестве датчика (катушки)

Рис. 11. Схема индикатора магнитных полей со светодиодной индикацией и телефоном в качестве датчика (катушки).

Схема простого индикатора магнитных полей со светодиодной индикацией

Рис. 12. Схема простого индикатора магнитных полей со светодиодной индикацией.

Более сложную конструкцию имеет индикатор по схеме И.П. Шелестова, изображенный на рис. 13.

Схема индикатора магнитных полей с применением компаратора

Рис. 13. Схема индикатора магнитных полей с применением компаратора.

Датчик магнитного поля подключен к управляющему переходу полевого транзистора, в цепь истока которого включено сопротивление нагрузки R1.

Сигнал с этого сопротивления усиливается каскадом на транзисторе VT2. Далее в схеме использован компаратор на микросхеме DA1 типа К554САЗ.

Компаратор сравнивает уровни двух сигналов: напряжения, снимаемого с регулируемого резистивного делителя R4, R5 (регулятора чувствительности) и напряжения, снимаемого с коллектора транзистора VT2. На выходе компаратора включен светодиодный индикатор.

Данный индикатор реагирует в широком диапазоне частот. Его частотные свойства определяются размерами подключенной к нему антенны и характеристиками примененного в нем диода.

Смастерить такой прибор по силам каждому. Состоит он из диода и микроамперметра. Диод можно использовать распространенный 4148. или же найти более подходящие для этой цели.

диод

диод

Микроамперметр желательно чтобы был на минимальный ток (50 мкА). При отсутствии такого, можно использовать стрелочный указатель от какой-либо техники. Но они бывают разные по чувствительности.

Провод-антенна припаивается к катоду диода. Его длина может быть произвольной. Чем длиннее — тем на более низкие частоты получится индикатор.

Буду изготавливать индикаторы напряженности электромагнитного поля из 3 разных указателей.

Первым использовал найденный в запасах новый указатель настройки для радиоприемников Selena.



Вторым взял указатель предположительно от какого-то магнитофона.



Третьим был указатель от какой-то серьезной промышленной техники.



Наиболее чувствительным оказался первый вариант.


Эти приборы не измеряют уровень электромагнитного поля, а показывают его наличие и позволяют оценить его относительно какого-то значения. Можно сравнивать излучение с разных передатчиков (раций) или с разных антенн, подключаемых по очереди к одному и тому-же передатчику (рации).

Детектор электромагнитного поля EMF Detector

Данное устройство поможет вам без труда обнаружить источники электромагнитных излучений, которыми являются все электроприборы, которые нас окружают.

Исходя из этого, можно сделать вывод, что область применения данного устройства достаточно широка и может с пользой применяться в жизни. В качестве примера могу предложить его для поиска электропроводки, расположенной в стене. Понятно, что такой прибор можно без труда собрать на двух транзисторах,

Детектор электромагнитного поля EMF Detector

но надеюсь, что владельцам Arduino такой вариант применения контроллера будет интересен.

Помимо любого контроллера Arduino вам понадобятся только резистор на 3,3 МОм, светодиод и кусок провода.

Светодиод подключаем между землей и 11 PWM выводом контроллера. Резистор вешаем между землей и 5-м аналоговым входом. Также к этому контакту необходимо подключить небольшой кусок провода, который будет использоваться в качестве антенны.

Затем подключаем Arduino к компьютеру и заливаем этот скетч:

int inPin = 5;
int val = 0;
int pin11 = 11;

void setup()
Serial.begin(9600);
>

void loop()
val = analogRead(inPin);
if(val >= 1)
val = constrain(val, 1, 100);
val = map(val, 1, 100, 1, 255);
analogWrite(pin11, val);
>
else
analogWrite(pin11, 0);
>
Serial.println(val);
>

Если теперь поднести наше устройство к электрической розетке, то светодиод загорится. В Serial Monitor вы можете наблюдать за уровнем сигнала.

Имейте ввиду, что компьютер также является источником электромагнитного излучения, поэтому рекомендую запитать ваш контроллер от батареи.

Если светодиод горит постоянно, то попробуйте увеличить сопротивление резистора.

При минимуме деталей и отсутствии активных компонентов он показывает действительно уровень поля, а не возможные неполадки своей электронной схемы.

Главным элементом для изготовления индикатора высокочастотного излучения является сверхвысокочастотный детекторный диод. В качестве такого диода могут быть применены старые (скорее всего точечные) СВЧ диоды типа Д405, Д602 или подобные, СВЧ детекторные диоды Шотки КА202— КА207, импортные детекторные СВЧ диоды. В крайнем случае, для пробы можно взять германиевый диод вроде Д311, но его рабочая частота не превысит 100 МГц.

Главным отличием детекторного диода является то, что прямая ветвь его вольтамперной характеристики начинает подниматься почти сразу от 0 В.

Внимание. Ни в коем случае не следует измерять СВЧ диоды тестером.

Пассивный индикатор электромагнитного высокочастотного поля

Пассивный индикатор электромагнитного высокочастотного поля

Пассивный индикатор электромагнитного высокочастотного поля

Рис. 4.6. Индикаторы поля: а — принципиальная схема пассивного индикатора поля; б—принципиальная схема индикатор поля со звуковой индикацией; в — принципиальная схема простого УВЧ для индикатора поля; г—принципиальная схема широкополосный стабильный УВЧ для индикатора поля

Любознательные, не имеющие характериографа, могут снять характеристику диода вручную с использованием вольтметра и миллиамперметра, подавая на диод прямое напряжение с шагом 0,05 В и ограничивая постоянный ток через него величиной не более 0,5 мА.

Когда диод найден, можно приступать к йзготовлению индикатора. Собственно, самим индикатором выступает стрелочный микроамперметр РА1 с пределом измерения тока 30—50 мкА. Кремниевые диоды VD1, VD2 защищают детектор и индикатор от перегрузки.

С помощью пассивного индикатора поля удобно исследовать поведение передатчиков, оценивать диаграммы направленности антенн, но для обследования помещений пассивный индикатор неудобен. Он имеет невысокую чувствительность, размахивая таким индикатором, поэтому затруднительно увидеть изменение положения стрелки прибора, да и сам высокочувствительный стрелочный микроамперметр очень не любит сотрясений и ударов.

Для удобства применения приходится окружать СВЧ детектор электронной схемой (рис. 4.6, б). Схема осуществляет световую и звуковую индикацию уровня напряженности поля.

Изменение напряженности поля можно оценивать по частоте следования звуковых сигналов длительностью 0,2 мс и частотой около 1 кГц или вспышек светодиода VD4.

Количество сигналов меняется от одного за десятки секунд до непрерывного тона при большом уровне сигнала. Звуковая индикация позволяющая оценивать текущий уровень ВЧ излучения и регулятор чувствительности позволяют быстро и эффективно локализовать источник радиоизлучения.

Положительные импульсы генератора не зависят от уровня входного сигнала, их длительность около 0,2 с задает цепочка R8, СЗ. Длительность пауз между импульсами зависит от скорости разряда СЗ через транзистор VT1 и резистор R6. А проводимость транзистора VT1 в свою очередь зависит от входного ВЧ напряжения выпрямленного детектором VD1 и увеличенного усилителем постоянного тока на DA1.1. В качестве DA1 используется счетверенный операционный усилитель с диапазоном входных сигналов, включающим нулевое входное напряжение.

Если чувствительность индикатора покажется недостаточной, то перед VD1 можно включить широкополосный высокочастотный усилитель выполненный по схеме приведенной на рис. 4.6, в или рис. 4.6, г.

Чтобы широкополосный УВЧ не возбуждался и имел равномерную частотную характеристику, он должен быть выполнен с соблюдением требований конструирования высокочастотных устройств.

Совет. Транзисторы для УВЧ желательно брать с граничной частотой не менее 4 ГГц.

Прибор снабжен телескопической антенной WA1 и питается от девятивольтовой батареи. Переменным резистором R3, совмещенным с выключателем питания SA1, регулируют чувствительность прибора. Его выставляют таким образом, чтобы увеличение уровня напряженности поля вызывало наиболее резкое изменение частоты следования импульсов индикации.

Литература: Корякин-Черняк С. Л. Как собрать шпионские штучки своими руками.

Читайте также: