Поворотная плита своими руками
Фрезерный стол облегчит вашу работу и поможет увеличить точность обработки заготовок. Вы можете купить готовый, а можете сделать фрезерный стол для ручного фрезера своими руками, применив навыки работы с деревом. Мы подготовили для вас достаточно подробную пошаговую инструкцию по изготовлению стола.
Суть всех конструкций горизонтального фрезерного стола одна, идея понятна — надо продумать её под себя и выполнить, учитывая свои возможности. А в итоге получить станок, позволяющий гораздо аккуратнее обрабатывать заготовки и производить операции, ранее казавшиеся сложными для ручного фрезера .
Определитесь с размером рабочей поверхности, отталкиваясь от габаритов обрабатываемых заготовок и свободного места в мастерской. Начните с малого — соорудите простую столешницу, закладывая в конструкцию возможности модернизации. Работайте на ней и понемногу доводите до ума.
Сделайте столешницу
Простейший стол для фрезера — отдельная рабочая плита, размещаемая на столярных козлах или между тумбами. Приспособление обходится в копейки и изготавливается за несколько часов, но позволит производить значительную долю тех же операций, что и многофункциональный станок. Понадобится лишь МДФ или березовая фанера толщиной 19–25 мм. Лучше подойдет покрытая пластиком панель, оказывающая меньшее сопротивление трения, а ламинированная с двух сторон плита не покоробится в процессе эксплуатации.
Выставите на циркулярной пиле точный прямой угол распила, нарежьте детали согласно размерам и отшлифуйте торцы.
Схема раскроя: 1 — основная плита; 2 — основание упора; 3 — передняя стенка упора; 4 — косынка (4 шт., размеры для 19-миллиметровой фанеры); 5 — царга (2 шт.); 6 — боковая планка; 7 — планка соединительная (4 шт.)
Схема раскроя: 1 — основная плита; 2 — основание упора; 3 — передняя стенка упора; 4 — косынка (4 шт., размеры для 19-миллиметровой фанеры); 5 — царга (2 шт.); 6 — боковая планка; 7 — планка соединительная (4 шт.)
Совет. Перед раскроем измерьте толщину листового материала, часто отличающуюся от стандарта. Внесите поправки в чертежи, исключая проблемы при сборке конструкции.
Чем ближе к транцу расположены двигатель, баки с горючим и пассажиры, тем более крутым должен быть клин. Наружную поверхность клина прострагивают таким образом, чтобы она плавно, по радиусу, переходила в поверхность днища.
Отгиб днища вниз у транца, образуемый при установке такого клина, повышает гидродинамическое давление на этом участке, выравнивающее катер на ходу.
Следует помнить, что для каждого корпуса существует оптимальный угол глиссирования (в пределах 4—6°). Если дифферент после установки клина станет меньше этого угла, соответственно увеличится смоченная длина днища, возрастет сопротивление, снизится скорость катера. Слегка подстрогав клин, можно добиться наиболее выгодного угла глиссирования.
Продление днища за транец .
Если этого недостаточно, необходимо передвинуть вперед место водителя, топливный бак и снабжение. Может потребоваться и увеличение наклона подвесного мотора (см. совет 273).
Наиболее эффективным средством регулировки дифферента являются регулируемые транцевые плиты. Обычно они представляют собой две небольшие пластины, шарнирно закрепленные к транцу в продолжение днища (рис. 252). С помощью различных устройств пластины можно отклонять вниз на небольшой угол ос. При этом на каждой из них создается значительное гидродинамическое давление, результирующая сила которого А направлена вверх перпендикулярно поверхности плиты. Эта сила пропорциональна квадрату скорости катера, а ее вертикальная составляющая D стремится поднять корму катера, т. е. уменьшить ходовой дифферент. Сила сопротивления плит движению R обычно невелика.
Этот способ уменьшения ходового дифферента особенно рекомендуется для катеров с двигателями, установленными в корме, или для легких мотолодок с двухмоторной установкой.
Существуют конструкции, позволяющие изменять отклонение транцевых плит на ходу катера.
Наиболее простые плиты можно сделать из алюминиевого угольника и пластины (рис. 253). Угольник 1 приклепывают к транцу лодки.
К нижней его полке прикрепляют упругую пластину 2, угол отгиба задней кромки которой регулируется отжимными винтами 3. Для мотолодок длиной 4,5 м размер пластины по ширине а = 150 мм, размер Ь = 75 мм; для катеров длиной 6,5 м а = 200 мм, Ь = 120 мм.
На тяжелых катерах с центром тяжести, значительно смещенным к корме, требуется более прочная конструкция с упором регулируемой длины. Чаще всего этот упор (рис. 254) выполняется в виде винтовой тяги — талрепа. Расстояние от кормовой кромки плиты до транца рекомендуется принимать в пределах 2—3% длины катера по ватерлинии, а ее ширину — равной 1 /4— 1 /5 ширины корпуса по скуле.
Если мотор слишком мощный.
Нередко на лодку с водоизмещающими круглоскулыми обводами устанавливают излишне мощный автомобильный двигатель. Корма таких судов не приспособлена к тому, чтобы воспринять гидродинамическую подъемную силу, которая начинает действовать на днище при повышении скорости, лодка идет с большим дифферентом.
Немного улучшают положение транцевая плита (рис. 256, а) увеличенной площади или плавники (рис. 256, б), закрепленные по бортам в корме. Лучше же изменить обводы кормы, надстроив на днище у транца так называемый подпорный клин (рис. 256, в и г). Полученная более широкая плоская корма позволит лодке выйти на скольжение, если только она не слишком тяжела; во всяком случае, дифферент на корму обычно снижается и скорость возрастает.
Транцевые плиты и гидрокрылья. Улучшаем ход судна…
Глубоко заблуждаются те, кто полагает, что транцевые плиты и гидрокрылья нужны катерам только в том случае, если судно не правильно настроено. Такое возможно и было верным лет двадцать тому назад, когда еще на сцене не появились легкие и прочные килеватые корпуса, однако и в наши дни транцевые плиты своим присутствием на борту способны принести пользу.
Хотя разнообразие конструкций транцевых плит и моделей гидрокрыльев весьма велико, принцип их действия практически одинаков…
Чем больше надстройки или, точнее, площадь надстроек у судна с глиссирующим корпусом, тем больше влияние ветра, сносящего корпус с выбранного курса, и для удержания которого потребуется вести судно под углом к ветру, а не по курсу…
Для этого штурвал следует повернуть так, чтобы судно оставалось на курсе, но для судов с глиссирующим корпусом, которых обычно уводит внутрь поворота (как и все прочие монокорпусные суда), в повороте нужно будет штурвалом не только компенсировать естественный завал корпуса, но и снос по ветру.
Мы все с этим сталкивались, когда пытались пересечь узкий залив в хорошую волну, направляя лодку на 15 градусов к ветру. Во время движения лодка начинает хлопать бортами по волнам, что не только повышает крен и лишает плавание на ней даже следов комфорта, но и существенно затрудняет управление лодкой. В результате Вам постоянно придется бороться с волнами, чтобы задать правильное положение корпусу лодки, меняя наклонение мотора и работая регулятором газа.
Выравнивание лодки подвесным мотором или кормовым приводом не устранит крена корпуса, но с помощью транцевых плит дела пойдут совсем иначе и результат будет достигнут проще и быстрее, поскольку все характеристики судна и его управляемость улучшатся.
Хотя разнообразие конструкций транцевых плит весьма велико, принцип их действия практически одинаков. Подвижные пластины, устанавливаемые поперек транца, принудительно отклоняются, направляя вниз поток воды, сообщая корпусу тем самым подъемную силу. В итоге корма поднимается, а нос лодки опускается. Подобным же образом можно регулируемые пластины наклонять независимо, и, опуская одну пластину, компенсировать крен корпуса лодки.
Если транцевую плиту по правому борту опустить, то правый борт лодки начнет подниматься, а левый борт опускаться, ну и наоборот. Однако положение носа и кормы не изменится, если двигаться будет одна только плита, и корпус судна начнет уходить одним бортом, одновременно опуская нос. Используя различные комбинации углов наклона транцевых плит, положение корпуса лодки можно выровнять для компенсации негативного влияния состояния воды, ветра или неравномерности распределения груза на борту.
Каждый корпус потребует различной степени отклонения каждой транцевой плиты для достижения требуемого результата, но всегда изменять положение плит следует постепенно, избегая резких движений. Если плита будет слишком наклонена, явно будет ощутимо ее тормозящее влияние, упадет скорость и тяга, судно начнет раскачиваться. В общем, чем меньше наклонены плиты, тем лучше.
Особенно эффективны плиты на небольших судах, прежде всего при изменении состояния воды или размещения пассажиров на борту, а также при значительной выработке запаса топлива. Кроме того, на малых судах различными системами транцевых плит легче будет добиться влияния на ходовые характеристики.
Для быстроходных сильно килеватых катеров со стационарными двигателями типа водометов, а также для большинства поверхностных (болотных и мелководных) двигателей транцевые плиты окажут немедленное кренящее или выравнивающее действие, или увеличат угол атаки корпуса, что облегчит выход на глиссирование и движение судна сделают более ровным.
Конструкции транцевых плит
Сегодня для изменения положения плит используются два основных типа толкателей – электрогидравлические и электромеханические. Существующие электрогидравлические системы состоят из гидравлического привода, в основном использующего 12-вольтовый реверсивный мотор для приведения в действие небольшого насоса высокого давления, и из масляного резервуара в замкнутом корпусе, который крепится изнутри к транцу поближе к плитам.
Короткие шланги от насоса проходят к подвижной раме, часто через отверстия в опорной раме и через непременно высверливаемые в транце отверстия. Это означает, что у системы отсутствуют длинные внешние шланги, которые могут цепляться и собирать грязь. Направление вращения электромотора управляется переключателем с приборной панели судоводителя. Соленоиды на моторе управляют включением цепей высокого напряжения, поэтому к переключателю на приборной доске подведены сравнительно тонкие быстросъемные провода.
Размер транцевых плит должен соответствовать параметрам судна, характеристикам двигателя и целям, которых вы стремитесь достигнуть с плитами. Практика же говорит, что для среднего случая и для плиты длиной 230 мм (9 дюймов) от стенки транца до обреза плиты, ширина этой плиты должна составлять примерно 1/12 длины лодки.
Основным различием гидравлических и электрических систем является их прочность. Электрические транцевые плиты установить проще, хотя бы потому, что электромотор находится внутри толкателя. Если же уплотнения не справятся, то вода зальет толкатель. В гидравлических же системах приводной мотор располагается внутри лодки, что обеспечивает их сравнительно большую долговечность, благодаря чему они служат не менее 15 лет.
Вразрез с распространенным убеждением, нейтральное положение установленных на транце выравнивающих плит находится не в одной плоскости с поверхностью глиссирования, а является слегка приподнятым, когда плиты не препятствуют свободному выходу из-под кормы лодки потока воды. Являясь продолжением днища лодки, опущенные транцевые плиты неизбежно будут создавать подъемный эффект. Под полностью поднятыми плитами должен свободно проходить воздух, и только в таком случае плиты не будут действовать, и корпус лодки перестанет испытывать их влияние.
Положением плиты управляет газонаполненный толкатель, установленный между транцем и плитой. Как наполненная газом пружина, распрямляющаяся без нагрузки, толкатель на стоянке или на малых скоростях движения отклоняет плиты вниз, а при возрастании скорости и давления набегающего потока воды, соответственно, — плита давит на толкатель, и он подается.
Когда лодка уменьшит скорость, толкатель снова выдвинется, опуская плиты. Как просто!
Хотя обе системы созданы для самостоятельного принятия решений, они весьма существенно отличаются по принципу действия и несопоставимы по цене.
Гидрокрылья
Если Вы не считаете, что транцевые плиты нужны вашей лодке, тогда возможно Вашему приводу на корме или подвесному мотору пригодится гидрокрыло.
При меньших затратах гидрокрыло помогает судоводителю удерживать лодку в режиме глиссирования на меньших скоростях движения. Если же вдруг обнаружится, что лодка склонна подпрыгивать на волнах, то гидрокрыло стабилизирует положение подвесного мотора и, позволит удержать нос лодки опущенным.
Кроме того, гидрокрыло снижает кавитацию винта. В то же время, поскольку в большинстве случаев гидрокрыло полностью находится в воде, оно добавляет трения о воду, слегка уменьшая максимальную скорость, с которой может двигаться лодка.
По материалам сайта Propeller Magazine.
Перевод Павла Дмитриева
2.1. В конструкции плиты магнитной прямоугольной использованы постоянные магниты, размещенные в стальной арматуре, которая используется как концентратор магнитной энергии.
Удельная сила притяжения – 80 Н/см2
Усилие переключения – не более 80 Н
2.2. Технические характеристики магнитных прямоугольных плит приводятся в таблице
Таблица — Технические характеристики прямоугольных магнитных плит
Модель | Ширина, мм | Длина плиты, мм | Длина основания, мм | Высота плиты, мм | Толщина магнитного слоя, мм | Шаг магнитных элементов, мм | Масса, кг |
Х41100-220 | 100 | 220 | 240 | 40 | 18 | 1+4 | 7 |
Х41150-400 | 150 | 400 | 420 | 40 | 18 | 1+4 | 19 |
Сфера применения
Магнитные плиты применяются при обработке металлов на станках различного типа. В первую очередь это шлифовальные станки, где применение магнитного способа фиксации позволяет обеспечить максимальный доступ к обрабатываемым поверхностям и исключить их механическое повреждение. Также они используются на фрезерных и токарных станках, при проведении сварочных работ, при сборочных операциях и в других случаях.
Широкое применение магнитные плиты получили благодаря надежной фиксации при сравнительно компактных размерах. Ещё одно важное преимущество – сохранение точности установки на протяжении всего срока эксплуатации изделия. Данный тип оснастки редко входит в базовую комплектацию станка, и поэтому их необходимо приобретать и устанавливать отдельно, учитывая размер, прижимное усилие и прочие параметры изделия.
Устройство и принцип работы.
3.1. Плита состоит из трех основных частей: подвижного и неподвижного магнитных блоков и корпуса. Магнитные блоки собраны из стальных пластин, между которыми расположены керамические постоянные магниты. Свободное пространство между стальными пластинами заполнено немагнитным материалом.
Рис. Устройство магнитной плиты
3.2. При включенном состоянии полюсы 2 силового блока лежат на немагнитных элементах 5 корпуса 1, направляя весь магнитный поток магнитов 3 через адаптер 4 и детали 6. при отключенном состоянии полюса 2 расположены под немагнитными прокладками адаптера. В результате магнитный поток имеет новое направление.
3.3. Подвижный магнитный блок расположен внутри корпуса и может смещаться с помощью эксцентрикового волка вправо или влево поворотом рукоятки на 180?. В выключенном положении совмещаются магнитопроводы с разной полярностью немагнитный поток на рабочей поверхности отсутствует.
По сравнению с электромагнитными плитами и гидро- или пневмoприспособлениями имеют следующие преимущества:
- не требуют подключения к источнику энергии;
- позволяют достигать более высокую точность при обработке заготовок;
- обеспечивают абсолютную надежность крепления;
- сохраняют основные технические параметры в течение всего срока службы на первоначальном уровне;
- не требуют периодического ремонта и технического обслуживания
Как устроены плоскошлифовальные станки
Подавляющее большинство деталей, изготовленных из металла, подвергается такой технологической операции, как шлифовка. Для ее выполнения с высокой эффективностью и точностью и применяются станки плоскошлифовальной группы.
Довольно сложный в изготовлении ленточный станок с отличным функционалом
На плоскошлифовальных станках серийных моделей можно обрабатывать как плоские, так и профильные детали. Точность обработки поверхности, которой удается добиться при использовании таких устройств, составляет 0,16 микрон. Конечно, достичь такого результата при обработке на станках, изготовленных своими руками, практически невозможно. Однако даже той точности, которую позволяют получать самодельные станки, вполне достаточно для многих металлических изделий.
Несущим конструктивным элементом станков данной группы (как и любого другого оборудования) является станина. От ее габаритов напрямую зависит, какого размера детали можно обрабатывать на станке. Наиболее распространенным материалом изготовления станин плоскошлифовального оборудования является чугун, так как данный металл за счет своих характеристик отлично гасит вибрации, что особенно важно для устройств подобного назначения.
Рабочий стол и органы управления шлифовального станка 3Г71М
Конструктивным элементом плоскошлифовальных станков, на котором фиксируется обрабатываемая заготовка, является рабочий стол, имеющий круглую или прямоугольную форму. Его размеры в зависимости от конкретной модели плоскошлифовального оборудования могут серьезно варьироваться. Обрабатываемые детали на таком рабочем столе могут фиксироваться за счет его намагниченной поверхности либо при помощи специальных зажимных элементов. В процессе обработки рабочий стол совершает возвратно-поступательные и круговые движения.
В плоскошлифовальных станках, выпускаемых серийно, рабочие столы приводятся в движение при помощи гидравлической системы. В оборудовании, собранном своими руками, для этого используют механические передачи.
Шлифовка стальной заготовки, фиксируемой на рабочей поверхности станка с помощью магнитного поля
Важными элементами конструкции плоскошлифовального оборудования, за счет которых обеспечиваются точность и плавность перемещения рабочего стола, являются направляющие. Кроме высокой точности изготовления, направляющие должны обладать исключительной прочностью, так как в процессе практически постоянных перемещений рабочего стола они подвергаются активному износу.
Для достижения высокой точности обработки направляющие должны обеспечить точное, плавное (без рывков) перемещение рабочего стола с минимальным трением соприкасающихся элементов. Именно поэтому для изготовления данных конструктивных элементов используется высокопрочная сталь, которую после изготовления из нее направляющих подвергают закалке.
Вариант изготовления направляющих с использованием уголков и подшипников
Рабочий инструмент плоскошлифовального станка, в качестве которого может использоваться шлифовальный круг или абразивная лента, устанавливается на шпинделе бабки. Вращение рабочему инструменту, за которое отвечает главный электрический двигатель, может передаваться посредством редуктора или ременной передачи.
Для плоскошлифовальных станков, которые делаются своими руками, можно выбрать более простой вариант: подобрать диаметр шлифовального круга таким образом, чтобы его можно было закрепить непосредственно на валу электродвигателя. Это исключит необходимость использования редукторной или ременной передачи.
Порядок работы и техническое обслуживание.
4.1. Магнитную плиту прямоугольную расконсервировать, ознакомиться с паспортом на изделие.
4.2. Разместить плиту магнитную на столе станка или на верстаке.
4.3. При необходимости, поверхность плиты магнитной может быть перешлифована в соответствии с производственными требованиями
4.4. После проверки правильности крепления можно перейти к работе на станке.
4.5. Заготовку из ферромагнитного материала разместить на плите в требуемом положении и повернуть рычаг на 180 градусов. Проверить надежность крепления. После этого можно переходить к обработке заготовки.
4.6. Стружку на магнитной плите, образующуюся при обработке заготовки можно удалить щеткой-сметкой после поворота рукоятки на 180 градусов, и после обратно зафиксировать заготовку, повернув рукоятку плиты.
4.7. По окончании работ повернуть рукоятку и снять заготовку с магнитной плиты.
4.8. Недопустимо воздействие ударной нагрузки на заготовку, закрепленную на магнитной плите, т.к. это приводит к снижению намагниченности отдельных магнитных элементовмагнитной плиты и соответственно к снижению сил притяжения плиты в целом.
4.9. При возникновении грубых забоин на зеркале рабочей поверхности магнитной плиты и вследствие этого, снижения точностных характеристик базирования заготовки, допускается перешлифовка рабочего зеркала плиты магнитной.
4.10. Удельная сила притяжения проверяется испытательным образцом ? 50 мм и высота 20 мм на расстоянии более 40 мм от всех краев зеркала рабочей поверхности плиты. Допускается в 10% контрольных точек, измеренных по диагонали плиты с шагом 10 мм,
снижения силы притяжения не менее 1,0 кгс/см2.
4.11. При перешлифовке зеркала рабочей поверхности плиты допускается снятие общего припуска не более 5,0 мм. В состоянии поставки зеркало рабочей поверхности плиты и основание предварительно шлифованы. Допуск на шлифовку согласно ТУ 2-024-2773-82 не более 1,5 мм. Окончательная шлифовка производится потребителем на собственном станке.
Конструкционные решения
Требуемое расположение заготовок под проход резца станка получается благодаря подвижности частей электромагнитной удерживающей плиты. Перемещение происходит в поперечной (0°- 30°) и продольной (0° — 45°) плоскости. Угол устанавливается высотой набора концевых мер, заданные значения которой сведены в таблицу.
Орган управления расположен на удобной в работе боковой стороне.
Электромагнитная удерживающая плита состоит из корпуса, полюсов, катушек, основания и выводной коробки.
Достоинством токовой модели является маленькое межполюсное расстояние, позволяющее удерживать части малого размера (4x4x0,2 см). Удельная сила притяжения может меняться от 20 Н/см ?до 130 Н/см?.
Катушки электромагнитного пояса могут располагаться неподвижно под плитой, совершающей возвратно-поступательные движения на шлифовальном станке.
В моделях стола, автономных от электрической сети, индукционные катушки заменены на магнитные блоки.
Как устроен магнитный блок
В корпус блока на 2 полосы установлены постоянные магниты. Расстояние между полюсами стола указывается в технических характеристиках изделия. Поворот управляющей рукоятки на 180° через эксцентрик подводит полюса к верхней кромке плиты. Деталь захвачена полем. Обратное действие разрывает контактирующие металлические части, освобождая заготовку.
Электромагнитная синусная плита
Согласно ГОСТ магнитная синусная плита по типу управления выполняется:
- ручного переключения;
- дистанционного управления.
Чертеж синусной плиты
- 50 Н/см? у класса В, А, С;
- 80 Н/см? у класса Н,П.
У всех моделей остаточный магнетизм не должен превышать 0,5 Н/см?. Фактическое значение проверяется динамометром, соединенным с контрольной пластиной (сталь 10, по ГОСТ 1050). Отклонения допускаются ГОСТ не более, чем в 10% контрольных точек стола.
Различия
Технология обработки задает различные варианты расположения обрабатываемой детали. С этой целью выбирают:
Фрезерный стол облегчит вашу работу и поможет увеличить точность обработки заготовок. Вы можете купить готовый, а можете сделать фрезерный стол для ручного фрезера своими руками, применив навыки работы с деревом. Мы подготовили для вас достаточно подробную пошаговую инструкцию по изготовлению стола.
Суть всех конструкций горизонтального фрезерного стола одна, идея понятна — надо продумать её под себя и выполнить, учитывая свои возможности. А в итоге получить станок, позволяющий гораздо аккуратнее обрабатывать заготовки и производить операции, ранее казавшиеся сложными для ручного фрезера .
Определитесь с размером рабочей поверхности, отталкиваясь от габаритов обрабатываемых заготовок и свободного места в мастерской. Начните с малого — соорудите простую столешницу, закладывая в конструкцию возможности модернизации. Работайте на ней и понемногу доводите до ума.
Сделайте столешницу
Простейший стол для фрезера — отдельная рабочая плита, размещаемая на столярных козлах или между тумбами. Приспособление обходится в копейки и изготавливается за несколько часов, но позволит производить значительную долю тех же операций, что и многофункциональный станок. Понадобится лишь МДФ или березовая фанера толщиной 19–25 мм. Лучше подойдет покрытая пластиком панель, оказывающая меньшее сопротивление трения, а ламинированная с двух сторон плита не покоробится в процессе эксплуатации.
Выставите на циркулярной пиле точный прямой угол распила, нарежьте детали согласно размерам и отшлифуйте торцы.
Схема раскроя: 1 — основная плита; 2 — основание упора; 3 — передняя стенка упора; 4 — косынка (4 шт., размеры для 19-миллиметровой фанеры); 5 — царга (2 шт.); 6 — боковая планка; 7 — планка соединительная (4 шт.)
Схема раскроя: 1 — основная плита; 2 — основание упора; 3 — передняя стенка упора; 4 — косынка (4 шт., размеры для 19-миллиметровой фанеры); 5 — царга (2 шт.); 6 — боковая планка; 7 — планка соединительная (4 шт.)
Совет. Перед раскроем измерьте толщину листового материала, часто отличающуюся от стандарта. Внесите поправки в чертежи, исключая проблемы при сборке конструкции.
Читайте также: