Передатчик на 27 мгц своими руками
Liks, всё зависит от расположения антенны, её качества и условий распространения радиоволн. Во время дальнего прохода связь возможна на очень большие расстояния. Я разговаривал с русским пилотом, находящимся в аэропорту хитроу (Англия), на 4 ватта (нахожусь в Рязани). С Германией общались почти каждый день. Сейчас я это дело забросил, в городе СиБишников не осталось, дальние связи меня утомили.
Liks, да, Си-Би для вас будет самым лучшим и оптимальным началом в освоении радиосвязи. Что касаемо схемы-это долго и трудоёмко, отобьёт всё желание и подорвёт нервную систему. Я серьёзно. Это конечно же не говорит, что ничего не надо делать своими руками. Просто нужен опыт! А если его нет.
Советую вам купить заводскую Си-Би станцию и антенну к ней. Последнюю, кстати, можно сделать самому! Если вас всё это вдохновит, то докупите усилок на 100-500 Вт и получите прибавку дальности огромную. По деньгам: на сегодня РС можно купить в пределах 5-7 т.р. Антенна на магните для авто стоит около 2 т.р. Антенна для крыши где то от 3 т.р. Тут можно почитать от си-би-шках отзывы.
Диапазон 26-27Мгц, 28 Мгц лежит на "краю" коротких волн. Это — самый "капризный" коротковолновый диапазон: день — два отличного прохождения внезапно могут смениться неделей полного его отсутствия. Сигналы радиостанций здесь бывают слышны только днем, точнее — в светлое время суток, за исключением отдельных редких случаев аномального распространения радиоволн, поэтому возможны связи только между корреспондентами, находящимися в освещенной Солнцем зоне Земли. Чаще всего на 28 Мгц можно слышать сигналы африканских станций, Азии, реже — Океании. Иногда к вечеру в европейской части хорошо проходят сигналы коротковолновых радиостанций США. Из европейских станций наиболее активны F, G, I, DL/DJ/DK. Сигналы станции Восточной Европы проходят сравнительно редко. Диапазон 28 Мгц свободен от помех и наиболее интересен для наблюдений в связи с резкими изменениями прохождения. Уникальность его в том, что если имеется прохождение, то даже с самой минимальной мощностью вам могут удасться связи на 10-12 тысяч км. Если прохождения нет, то не поможен и наличие мощного передатчика.
Между базовыми станциями: 15—80 км;
Между базовой станцией и автомобилем: 15—40 км;
Между базовой станцией и портативной: 3—10 км;
Между автомобилями: 5—15 км;
Между автомобилем и портативной станцией: 2—7 км;
Между портативными станциями: 1—5 км.
Приведенные данные по дальности связи – весьма усредненные. Они справедливы для большинства случаев, хотя в реальности известны факты значительного их превышения.
Радиосвязь на KB обеспечивается в подавляющем большинстве случаев отражением, а точнее говоря, преломлением волны внутри какого-либо слоя ионосферы. Напомним, что ионосфера Земли представляет собой совокупность ионизированных слоев или областей (отсюда и пошло ее название), возникших под влиянием солнечной радиации и плавно пере ходящих одна в другую. В ночное время, когда отсутствует излучение Солнца, концентрация ионизированных частиц падает, что приводит к ослаблению отражающих (преломляющих) свойств ионосферы.
Степень ионизации существенно зависит от активности Солнца, которая изменяется со средним периодом 11,3 года (по данным, начиная с 1750 года). Количественная характеристика этой активности — число Вольфа (W) связано с числом пятен на видимой стороне диска светила. Сейчас идет цикл, максимум которого ожидается в 1979—1980 годах (см. рис.1). В настоящее время не имеется единого мнения относительно сроков и величины очередного максимума. Поэтому на рисунке показаны две пунктирные линии, соответствующие прогнозам, полученным различными методами.
Слои ионосферы обозначаются латинскими буквами D, Е и F.
Область F имеет максимальную электронную концентрацию и является основной отражающей областью при ионосферном распространении коротких волн, вплоть до 10 - метрового диапазона. Днем эта область как - бы расщепляется на два слоя: F1 и F2. Слой F1 обычно расположен на высоте от 150 до 250 километров, а слой F2 - от 300 до 450 километров. Ионизация в области F поддерживается в основном за счет ультрафиолетовой составляющей солнечного излучения. Иногда область F имеет диффузный характер, который приписывается электронным облакам, имеющим концентрацию, отличную от окружающей. Ночью ионизация в области F частично сохраняется. Выше области F электронная концентрация постепенно убывает.
Ниже области Е на высотах 50 — 60 километров расположена область D. Ионизация этой области в основном обусловлена рентгеновским излучением Солнца. Ионизация максимальна в полдень и быстро падает, когда Солнце скрывается за горизонтом. Ночью ионизация в области D полностью исчезает.
Во время сильных солнечных вспышек увеличение рентгеновского излучения Солнца вызывает резкое возрастание ионизации области D. Это приводит к так называемым внезапным ионосферным возмущениям, следствием которых является полное нарушение коротковолновой радиосвязи на освещенной половине земного шара на срок от нескольких минут до нескольких десятков минут из-за полного поглощения в области D.
А вот сигнал, посланный из пункта В, достигает пункта Б несколько необычным путем. Отразившись от слоя F2 (на рисунке ясно видно, что частота этого сигнала ниже F2 -МПЧ, так как он не проникает глубоко в слой) сигнал в слое F1 встретился с областью повышенной ионизации и был отражен обратно к слою F2 и, только отразившись вторично от слоя F2 , достиг пункта Б. Подобным образом сигнал может распространяться между слоями, как в волноводе, на значительные расстояния. Сигнал, посланный из пункта В, частота которого больше, чем F2 –МПЧ, слоем не отразился и ушел в космос.
Сигнал, посланный из пункта Б, встретился в слое F2 с диффузностью и раздробился на отдельные лучи. Как уже было сказано выше, F2 является основным отражающим слоем при дальнем распространении коротких волн. А каждое прохождение волны через слой (D, E. F) и отражение приводит к потере энергии волны, причем чем ниже расположен слой, тем больше энергии теряет волна при прохождении через него, и чем ниже частота волны, тем больше потери энергии.
Перейдем к непосредственному рассмотрению прохождения на раз личных KB диапазонах. Диапазон 3,5 МГц является самым низко частотным из широко применяемых KB диапазонов. В принципе, отражение волн этого диапазона возможно во всех слоях ионосферы. Однако слой D сильно поглощает волны нижней части KB диапазона, включая и 80-метровые. Поэтому днем в диапазоне 3,5 МГц редко бывают слышны станции, расположенные дальше 400 — 500 км. В это время диапазон, как всем известно, используется для проведения местных связей.
Ночью слой Е также исчезает, хотя гораздо медленней, чем D, и при мерно за два часа до восхода Солнца МПЧ слоя может стать меньше нижней границы диапазона, и отражения тогда уже будут происходить от слоя F, который и обеспечит в случае многоскачковой структуры наиболее дальнее прохождение.
Зимой, когда ночи становятся длиннее, ионизация нижних слоев пропадает быстрее и возможности проведения дальних связей увеличиваются.
В течение цикла солнечной активности критические частоты слоя Е изменяются мало, увеличиваясь лишь на 15—20% при переходе от минимума к максимуму, так что изменения в характере прохождения в диапазонах 3,5 МГц и 7 МГц не очень заметны.
Большой уровень помех, трудность в применении узконаправленных антенн, сильное затухание волн этих диапазонов создают большие трудности в работе коротковолновика, и поэтому каждое проведенное DX QSO приносит большое удовлетворение.
Весной и летом наблюдается усиленная генерация Es-облаков с высокой МПЧ, что может быть причиной прослушивания в отдельные моменты редких (ближних) станций.
Как было уже сказано, слой F расщепляется на два. Отражение от слоя F1 наблюдается исключительно днем, при этом на широтах примерно выше 50° с. ш. — только летом, на более низких — в течение всего года. Суточный ход fоF2 симметричен относительно полудня, когда fо имеет максимальное значение. В течение цикла солнечной активности возрастание fоF2 составляет не более 30%.
Поведение слоя F2 более сложно. Например, летом может быть аномальное суточное изменение fоF2 когда максимум наблюдается не только в полдень, а в утренние часы и до захода Солнца. И зимой и летом fоF2 достигает максимума за полчаса до восхода Солнца. В зимний полдень fоF2 больше, чем в июне примерно в 1,5—2 раза. Критическая частота F2 зависит от числа Вольфа (W) и может увеличиваться на 50—100%. Вот почему хорошее и устойчивое прохождение в диапазоне 28 МГц может быть только в годы максимума солнечной активности. В годы минимума активности прохождение в этом диапазоне обуславливается в основном лишь отражением от Es-облаков, особенно в летнее время. На 28 МГц возможно и отражение от полярного сияния и метеорных следов, но в радиосвязи на KB эти явления не используются.
Следует заметить, что потери энергии при работе на 10 метрах, по сравнению с другими, самые минимальные. Это обусловлено малым поглощением волн этого диапазона в нижних слоях ионосферы, что позволяет проводить дальнее связи при относительно малой мощности передатчика.
Критические частоты слоев имеют не только суточные и сезонные изме нения. Их параметры зависят также от широты. При движении к экватору критические частоты слоев Е и F1 , F2 увеличиваются. Это дает не которые преимущества в использовании высокочастотных диапазонов коротковолновикам южной части СССР.
Интересно, что перед бурей часто наблюдается увеличение МПЧ до 50 МГц и выше. В течение этого периода возможна связь на 28 МГц при двух-, трехскачковом отражении от слоя F2 и даже дальний прием телевидения.
РОМАН. ну Вы прочитали курс лекции как в аудитории слушателям за 50минут. молодец.
А вообще зависит от прохождения. было летом.
Связывался (на легковой перед.10вт а на базе 50ват. и связь была отличной летом.эт. лет 10 назад).
диапаз. 27мГц. без слов.
samodelkin121, Я щас подумал. Неподготовленный человек щас начитался НЕзнакомых терминов и понятий,и подумает..Да ,ну!ее нафиг с такими-то сложностями и мудреными законами
27МГц
И так, если вы величайший поклонник радиотехники, то вас это непременно заинтересует, а если не поклонник, то тогда заинтересует ещё больше. Я расскажу как в домашних условиях можно собрать простейшую рацию, способную работать на расстоянии до 1,5 км.
На первый взгляд кажется проще купить пару раций по 100 баксов и не париться с микросхемами, но с другой стороны сколько вы кайфа получите от того что собрали рацию сами и примерно в 10 раз дешевле. Таким образом я не призываю к серийному производству, а просто хочу показать, что многие вещи не стоит покупать за бешенные бабки, а сделать их самому.
Начинаем сборку деталей. Для каждой рации нам потребуется:
Резисторы | шт | Транзисторы | шт |
3K | 2 | МП42 | 4 |
4,7K | 2 | П416Б | 3 |
6,8K | 6 | ||
22K | 1 | ||
36 | 1 | ||
100K | 1 | ||
120K | 1 | ||
160K | 2 | ||
270K | 1 | ||
Конденсаторы | шт | Прочее | шт |
5МКх10В | 4 | Антенна | 1 |
10МКх10В | 2 | Микрофон | 1 |
3300 | 2 | Динамик | 1 |
1000 | 2 | Включатель | 1 |
100 | 2 | Переключатель | 1 |
22 | 1 | Источник пост.тока | 1 |
10 | 1 | Плата текстолита | 2 |
6 | 2 | Проволока 0,5мм | --- |
5-20 | 2 | Проволока 0,1мм | --- |
0,047МК | 1 | Соединит.провода | --- |
Для приема и передачи используется одна общая антенна А1. Выключатель SA2 подсоединяет радиостанцию к источнику питания - во время передачи к передатчику, а при приеме к приемнику.
Прежде чем начать сборку, надо собрать все детали. Катушки индуктивности, дроссели, монтажную плату и корпус вам предстоит сделать самостоятельно. Ну, корпус это собственно не проблема, можно достать от детских раций, которые на рынке продают по 100р.
Катушки наматываются на каркасах из полистирола, оргстекла или картона с наружным диаметром 8мм и высотой 20мм(см рис 3). Все катушки имеют однослойную намотку виток к витку медной проволокой диаметром 0,5мм. Катушки L1 и L5 содержат по 10 витков. Катушки L2 и L3 наматываются на одном каркасе, без сердечника. L2 располагается в середине каркаса между половинками катушки L3. Она состоит из 4 витков, а катушка L3 имеет 8 витков с отводом провода от середины.
Дроссели L4 и L6 намотаны на корпусах резисторов типа МЛТ-0,5 сопротивлением не менее 1МОм. Обмотки состоят из 200 витков провода ПЭЛ или ПЭВ диаметром 0,1 мм и имеют индуктивность около 40 микрогенри.
Вместо микрофона можно использовать высокоомный наушник. Для сборки понадобится две платы из текстолита. На одной будет располагаться задающий генератор, на другой - приёмник и усилитель низкой частоты передатчика. Монтажными стойками и выводными штырьками служат отрезки медной луженой проволоки длинной до 10мм, вбитые в отверстия диаметром 1мм.
Примерное расположение деталей на монтажной плате показано на рис5. Они размещены с одной стороны, а с другой соединены между собой изолированным проводом диаметром 0,2-0,3мм. Батареи питания подключены к схеме гибким многожильным проводом в хлорвиниловой изоляции. Если у вас есть фольгированный гетинакс, можно сделать монтаж печатным. Проследите, чтобы соединительные провода были по возможности короче, а витки катушек и дросселей располагались взаимно перпендикулярно. Задающий генератор отделите от других частей радиостанции экраном из жести, соединив экран с плюсовым проводом питания.
Выводы высокочастотных транзисторов укоротите до 1 см. Будьте осторожны при пайке. Во избежание перегрева транзистор лучше держать плоскогубцами или пинцетом, которые будут отводить тепло.
Корпус радиостанции - коробка из пластмассы или тонкой жести. Можно использовать и испорченный телефон-трубку, но тогда для питания подберите компактные дисковые аккумуляторы.
На переднюю панель радиостанции выведена ручка конденсатора С15 для настройки приемника. На торцевой стенке корпуса располагаются переключатель SA2(прием - передача) и выключатель питания SA1. Антенна - телескопическая от радиоприемника или латунная трубка диаметром 3-5мм и длинной 900-1000мм.
Случается схема собрана правильно и детали исправны, а радиостанция работает плохо: радиус действия мал, звук искаженный, хриплый. Не огорчайтесь, а примитесь за наладку. Ее начинают с приемника. Включите рацию на "прием" и подсоедините питание. При нормальной работе сверхрегенератора в телефоне будет слышен шум, похожий на шум кипящего чайника. На время настройки вместо резистора R10 включите переменный резистор сопротивлением 33-47 кОм и с его помощью добейтесь максимального шума.
Изменяя индуктивность катушки L5 подстроечным сердечником, настройте приемник на одну из станций в выбранном диапазоне. Добившись хорошего приема сигналов, переменный резистор замените на постоянный с таким же сопротивлением.
Настроить контур приемника на нужную частоту можно с помощью УКВ сигнал-генератора, который позволит заодно измерить и чувствительность приемника. Налаживание усилителя низкой частоты сводится к точному подбору резисторов R15 и R17. Окончательно приемник настраивается в полевых условиях по сигналам передатчика.
Закончив регулировку приемника, включаем радиостанцию на "передачу". Проверку работы передатчика начните с микрофонного усилителя. Вместо резистора R4 включите наушник или капсюль ДЭМШ. Произнесите несколько слов перед микрофоном. Если голос искажён, подберите сопротивление резисторов R1 и R3.
Для проверки генератора в разрыв цепи питания коллекторов транзисторов VT3-VT4 включите миллиамперметр со шкалой 0-100мА. Величина колебательных токов транзисторов должна быть равна 60-70мА. Устанавливается она подбором резистора R9.
Для настройки генератора и антенны передатчика сделайте волномер. Схема его показана на рис.4. На каркас диаметром 22мм намотайте катушку L из 10 витков провода ПЭЛ или ПЭВ диаметром 1,2мм. Отвод сделайте от третьего витка, считая от нижнего (по схеме) конца. Конденсатор С1 - подстроечный, с воздушным диэлектриком. Микроамперметр рассчитан на ток 100мкА. Шкалу волномера (22-32МГц) нужно предварительно проградуировать по УКВ сигнал-генератору. Установите ручку конденсатора С1 против деления, соответствующего рабочей частоте передатчика, а катушку L волномера расположите в непосредственной близости от катушки L3. Изменяя емкость конденсатора С9 добейтесь наибольшего отклонения стрелки на индикаторе волномера.
Приблизив волномер к антенне, вращением сердечника катушки L1 настройте антенну в резонанс с частотой настройки контура L3C8C9, добиваясь максимального отклонения стрелки на индикаторе волномера.
Установить частоту работы передатчика в разрешенном диапазоне 27МГц можно по гетеродинному волномеру типа Ч4-1 в радиоклубе или на станции юных техников.
В самодельной системе радиоуправления удобно использовать в качестве кодера и декодера команд микросхемы для двухтонального набора телефонного номера. Формируемый двухтональный сигнал практически тот же телефонный аудиосигнал, так же легко передать и принять с помощью любого аналогового канала связи. При этом двухтональная система достаточно хорошо помехозащищенная.
Здесь приводится схема передающего и приемного трактов для передачи двухтонального или 34 сигнала на частоте диапазона 27MHz.
Схема передатчика показана на рис.1. Его выходная мощность не более 0,1 W. Схема состоит из задающего генератора с кварцевой стабилизацией частоты, выполненного на транзисторе VT2, усилителя мощности на транзисторе VT3 и амплитудного модулятора на транзисторе VT1.
Антенна W1 - проволочный штырь длиной 50 см. Но его можно заменить и телескопическим штырем, например, от портативного приемника, что будет удобнее.
Амплитудный модулятор выполнен на транзисторе VT1. Он включен в разрыв цепи питания VT3, транзистор VT1 существенно открыт резистором R1, создающим напряжение смещения на его базе. При подаче модулирующего сигнала на его базу через конденсатор С1 происходит изменение эмиттерного тока VT1, что приводит к соответствующему изменению напряженности излучаемого сигнала. То есть, происходит амплитудная модуляция. Глубина модуляции зависит от входного напряжения модулирующего НЧ-сигнала. А оптимальный режим модуляции можно установить экспериментально, подбором сопротивления R1.
В передатчике есть четыре индуктивности, три из них на схеме подписаны значениями индуктивности, - это готовые дроссели промышленного изготовления. Хотя, никто не запрещает на их местах применить и самодельные дроссели такой же индуктивности.
Катушка L3 - самодельная, подстроечная. Для её намотки используется пластмассовый каркас диаметром 5 мм с подстроечным ферритовым сердечником диаметром 2,8 мм. (такие каркасы, так же, применялись в модулях цветности советских телевизоров УСЦТ, а так же, и во многой другой аппаратуре). Катушка содержит 7 витков намоточного провода диаметром 0,35 мм.
Принципиальная схема приемного тракта показана на рисунке 2. Тракт построен по схеме сверхрегенеративного детектора, которым является каскад на транзисторе VT1. Сигнал от антенны поступает на его коллекторный контур L2-C3.
Продетектированный сигнал через цепочку R5-С5 поступает на усилитель-фильтр, сделанный на логических инверторах микросхемы 4069, переведенных с помощью цепей ООС в аналоговый усилительный режим.
Катушка L2 - самодельная, подстроечная. Для её намотки используется пластмассовый каркас диаметром 5 мм с подстроечным ферритовым сердечником диаметром 2,8 мм. (такие каркасы, также, цветности советских телевизоров УСЦТ, а так же, и во многой другой аппаратуре). Катушка содержит 13 витков намоточного провода диаметром 0,35 мм.
Давно известно,что низкочастотные полевики способны работать на КВ.Я подбирал полевики и обнаружилось, что самую большую мощность дают полевики 600 серии,но не все IRF640 не подходит.Лучшим оказался IRF610,производства IR.Чуть хуже IRF630-он дает только 22 ватта,по этой схеме.Неплохо работают полевики серии 2N60,и P4NK60.Можно получить больше мощности,увеличив число витков выходного трансформатора до 4.Сердечник выходного трансформатора ферритовый бинокль.Стоимость IRF610-0.5 доллара.Можно снизить напряжение питания до 14в,будет примерно 18ватт.
Присоединённое изображение
Мой вч трансформатор.
Присоединённое изображение (Нажмите для увеличения)
QUOTE (radiofan @ Dec 20 2015, 05:08 PM) |
. Можно получить больше мощности,увеличив число витков выходного трансформатора до 4. |
Соотношение витков в так называемом " выходном трансформаторе" говорит лишь об одном , что в твоем трансформаторе выходное сопротивление транзистора трансформируется в импеданс антенны с соотношением 1:4
(отношение витков 1:2 ), если во вторичке будет 4 витка ( Nвит1:Nвит2=1:4 ) то коэффициент трансформации импеданса будет равен 16.
Rds(on) -Static Drain-to-Source On Resistance для IRF610-го =1,5 оМа . Делай выводы.
Титов рекомендует выходное сопротивление каскада считать как Uсимакс/Iсмакс, т.е. 200В/3,3А=30 Ом
1,5 Ома имеет значение только в ключевом режиме
QUOTE (romanetz @ Dec 21 2015, 12:14 PM) |
Ой, 200/3,3=60 Ом, пардон муа |
Железо у тебя собрано и работает .Верно? Да.
Проверяется только не так. Трансформатор импедансов одинаково работает в обе стороны. Ты нагрузил его Rн=50 оМ, тогда транзистор нагружен 50:4= 12,5 оМа.
На эту нагрузку транзистор отдаст Р= (Епит-Uост ): (2*Rн ) = (30 -1 ): (2*12,5 )= 33,64 вт. При расчете перед сборкой эта мощность ожидаемая! , что ты и получил.Ток стока.2,4 А . Это почти предел. Ток проверить можно?
При соотношении витков 1:4 Ктр=16 .Тогда транзистор нагружен на почти 3 ома. При питании 30 вольт он должен накрыться медным тазом.
Присоединённый файл ( Кол-во скачиваний: 394 )
IRF610.pdf
Как плохо что нельзя писать формулы на сайте,в пред.посте должно быть так
Р= (Епит-Uост )*(Епит-Uост ): (2*Rн ) = (30 -1 )(30 -1 ) : (2*12,5 )= 33,64 вт
Да это понятно,что IRF610 при 4 витках умрет,но 630 выдержит.Я его имел ввиду.С 2 витками у 610 ток стока 1.2а.И ксв 1.1.
Кстати,можно ведь и 2 штуки 610 в параллель поставить.И снять ватт 50-60.Коллеги, объясните мне по какой причине,в даташите на мощные вч транзисторы указана мощность,допустим MRF421-100w выходной мощности,при12.5в,это 70.7в,в то время как напряжение КЭ -всего 20в.А значит,такую мощность невозможно получить без выходного повышающего трансформатора.В то же время в даташите нарисована обычная схема усилителя с дросселем в нагрузке которая даст максимум 12-14в амплитуды.Что это за развод такой?
Читайте также: