Модель атома азота своими руками

Добавил пользователь Дмитрий К.
Обновлено: 05.09.2024

Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование.

Мы уже говорили о том, что одна из главных целей наблюдения – поиск закономерностей в результатах экспериментов.

Например, для того чтобы изучить молнию (природное явление), ученым не нужно было дожидаться непогоды. Молнию можно смоделировать на уроке физики и в школьной лаборатории. Двум металлическим шарикам нужно сообщить противоположные электрические заряды – положительный и отрицательный. При сближении шариков до определенного расстояния между ними проскакивает искра – это и есть молния в миниатюре. Чем больше заряд на шариках, тем раньше при сближении проскакивает искра, тем длиннее искусственная молния. Такую молнию получают с помощью специального прибора, который называется электрофорной машиной.

Каждая естественная наука использует свои модели, которые помогают зримо представить себе реальное природное явление или объект.

Самая известная географическая модель – глобус. Это миниатюрное объемное изображение нашей планеты, с помощью которой вы можете изучать расположение материков и океанов, стран и континентов, гор и морей. Если же изображение земной поверхности нанести на лист бумаги, то такая модель называется картой.

Моделирование в физике используется особенно широко. На уроках по этому предмету вы будете знакомиться с самыми разными моделями, которые помогут вам изучить электрические и магнитные явления, закономерности движения тел, оптические явления.

При изучении биологии модели также широко используются. Достаточно упомянуть, например, модели – муляжи цветка, органов человека и т.д.

Не менее важно моделирование и в химии. Условно химические модели можно разделить на две группы: материальные и знаковые (или символьные).


Материальные модели атомов, молекул, кристаллов, химических производств химики используют для большей наглядности.

Вы, наверное, видели изображение модели атома, напоминающее строение Солнечной системы (рис. 30).

Рис. 30.
Модель строения атома

Для моделирования молекул химических веществ используют шаростержневые или объемные модели. Их собирают из шариков, символизирующих отдельные атомы. Различие состоит в том, в шаростержневых моделях шарики-атомы расположены друг от друга на некотором расстоянии и скреплены друг с другом стерженьками. Например, шаростержневая и объемная модели молекул воды показаны на рис. 31.

Рис. 31.
Шаростержневая и объемная
модели молекулы воды

Модели кристаллов напоминают шаростержневые модели молекул, однако изображают не отдельные молекулы вещества, а показывают взаимное расположение частиц вещества в кристаллическом состоянии (рис. 32).

Рис. 32.
Модель кристалла меди

Однако чаще всего химики пользуются не материальными, а знаковыми моделями – это химические символы, химические формулы, уравнения химических реакций.

Разговаривать на химическом языке, языке знаков и формул, вы начнете уже со следующего урока.

1. Что такое модель и что – моделирование?

2. Приведите примеры: а) географических моделей; б) физических моделей; в) биологических моделей.

3. Какие модели используют в химии?

4. Изготовьте из пластилина шаростержневые и объемные модели молекул воды. Какую форму имеют эти молекулы?

5. Запишите формулу цветка крестоцветных, если вы изучали это семейство растений на уроках биологии. Можно ли назвать эту формулу моделью?

6. Запишите уравнение для расчета скорости движения тела, если известны путь и время, за которое он пройден телом. Можно ли назвать это уравнение моделью?

Й.Я.Берцелиус
(1779–1848)

Русские и латинские названия, знаки 20 химических элементов и их произношения приведены в табл. 2.

В нашей таблице уместилось всего 20 элементов. Чтобы увидеть все 110 элементов, известных на сегодняшний день, нужно посмотреть в таблицу химических элементов Д.И.Менделеева.

Названия и символы некоторых химических элементов

Чаще всего в состав веществ входят атомы нескольких химических элементов. Изобразить мельчайшую частицу вещества, например молекулу, можно с помощью моделей-шариков так, как вы это делали на предыдущем уроке. На рис. 33 изображены объемные модели молекул воды (а), сернистого газа (б), метана (в) и углекислого газа (г).

Рис. 33.
Объемные модели молекул воды (а),
сернистого газа (б), метана (в)
и углекислого газа (г)

Чаще для обозначения веществ химики пользуются не материальными моделями, а знаковыми. С помощью символов химических элементов и индексов записываются формулы веществ. Индекс показывает, сколько атомов данного элемента входит в состав молекулы вещества. Он записывается внизу справа от знака химического элемента. Например, формулы упомянутых выше веществ записывают так: Н2О, SO2, CH4, CO2.

Химическая формула – основная знаковая модель в нашей науке. Она несет очень важную для химика информацию. Химическая формула показывает: конкретное вещество; одну частицу этого вещества, например одну молекулу; качественный состав вещества, т.е. атомы каких элементов входят в состав данного вещества; количественный состав, т.е. сколько атомов каждого элемента входит в состав молекулы вещества.

По формуле вещества можно определить также, простое оно или сложное.

Простыми веществами называют вещества, состоящие из атомов одного элемента. Сложные вещества образованы атомами двух или более различных элементов.

Например, водород Н2, железо Fe, кислород О2 – простые вещества, а вода Н2О, углекислый газ СО2 и серная кислота H2SO4 – сложные.

1. Знаки каких химических элементов содержат заглавную букву С? Запишите их и произнесите.

2. Из табл. 2 выпишите отдельно знаки элементов-металлов и элементов-неметаллов. Произнесите их названия.

3. Что такое химическая формула? Запишите формулы следующих веществ:

а) серной кислоты, если известно, что в состав ее молекулы входят два атома водорода, один атом серы и четыре атома кислорода;

б) сероводорода, молекула которого состоит из двух атомов водорода и одного атома серы;

в) сернистого газа, молекула которого содержит один атом серы и два атома кислорода.

4. Что объединяет все эти вещества?

Изготовьте из пластилина объемные модели молекул следующих веществ:

а) аммиака, молекула которого содержит один атом азота и три атома водорода;

б) хлороводорода, молекула которого состоит из одного атома водорода и одного атома хлора;

в) хлора, молекула которого состоит из двух атомов хлора.

Напишите формулы этих веществ и прочитайте их.

5. Приведите примеры превращений, когда известковая вода является определяемым веществом, а когда – реактивом.

6. Проведите домашний эксперимент по определению крахмала в продуктах питания. Какой реактив вы использовали при этом?

7. На рис. 33 изображены модели молекул четырех химических веществ. Сколько химических элементов образуют эти вещества? Запишите их символы и произнесите их названия.

8. Возьмите пластилин четырех цветов. Скатайте самые маленькие шарики белого цвета – это модели атомов водорода, синие шарики побольше – модели атомов кислорода, черные шарики – модели атомов углерода и, наконец, самые большие шарики желтого цвета – модели атомов серы. (Конечно, цвет атомов мы выбрали условно, для наглядности.) С помощью шариков-атомов изготовьте объемные модели молекул, показанных на рис. 33.


Когда вы первый раз заходите с помощью соцсетей, мы получаем публичную информацию из вашей учетной записи, предоставляемой провайдером услуги соцсети в рамках ваших настроек конфиденциальности. Мы также автоматически получаем ваш e-mail адрес для создания вашей учетной записи на нашем веб сайте. Когда она будет создана, вы будете авторизованы под этой учетной записью.

Когда вы первый раз заходите с помощью соцсетей, мы получаем публичную информацию из вашей учетной записи, предоставляемой провайдером услуги соцсети в рамках ваших настроек конфиденциальности. Мы также автоматически получаем ваш e-mail адрес для создания вашей учетной записи на нашем веб сайте. Когда она будет создана, вы будете авторизованы под этой учетной записью.

Цитата:

Декарт со своего рабочего стола управлял будущим в большей степени, чем Наполеон со своего трона.

Оливер Уэнделл Холмс (младший)
американский юрист и правовед.


В этой статье мы рассмотрим характеристики азота в химии, узнаем, какие степени окисления может иметь азот и поговорим о важнейших соединениях, в состав которых входит этот химический элемент.

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Азот (N2) — первый представитель V группы главной подгруппы и 2 периода периодической системы химических элементов Д. И. Менделеева. Если рассматривать местоположение азота в длиннопериодной таблице Менделеева, то там он занимает лидирующее место в 15 группе. Для представителей этой группы было предложено название пниктогены (от греческого корня pn??go — удушливый, плохо пахнущий). Явно это относится к водородным соединениям представителей данной группы.

Электронное строение азота

Рассмотрим строение атома и электронную конфигурацию азота, а затем сделаем некоторые заключения.

Атомный или порядковый номер азота равен 7, что соответствует количеству электронов и протонов в ядре. Молярная масса равна 14,00728 г/моль, а количество нейтронов в атоме этого изотопа равно семи.

Теперь перейдем к электронному строению. В основном состоянии электронная формула азота: 1s 2 2s 2 2p 3 , в сокращенном виде — [He]2s 2 2p 3 . На внешнем энергетическом уровне 5 валентных электронов, среди которых 3 неспаренных p-электрона.

Электронная конфигурация азота

Исходя из такой конфигурации, азот может образовывать только 3 связи по обменному механизму и еще одну по донорно-акцепторному механизму. Это связано с тем, что на втором подуровне у азота больше нет вакантных орбиталей, куда могли бы распариться электроны с 2s-подуровня. Отсюда вытекает максимальная валентность азота IV.

Для азота характерен весь спектр возможных степеней окисления от -3 до +5.

Давайте рассмотрим шкалу, где отражены соединения азота в различных веществах.

Важнейшие окислители и восстановители

Строение молекулы азота

Азот — двухатомная молекула, атомы которой связаны между собой прочной тройной связью. Длина связи — 0,110 нм.

Строение молекулы азота

Почему именно тройная связь и из чего она состоит?

Напомним, что у каждого атома в молекуле азота 3 неспаренных электрона, которые и образуют впоследствии тройную связь, которая, в свою очередь, состоит из одной сигма-связи и двух пи-связей.

Физические свойства азота

Азот как простое вещество — бесцветный газ, который не имеет запаха и плохо растворяется в воде. По своей молярной массе азот легче, чем воздух. Благодаря наличию тройной неполярной связи и относительно маленьким радиусам атомов азот имеет низкие температуры кипения и плавления: tпл = -210 °С и tкип = -196 °С. Аллотропных модификаций азот не имеет. Несмотря на то, что основное состояние азота — газообразное, он бывает еще и жидким. Например, 1 литр жидкого азота при нагревании до 20 °С превращается в 700 литров газообразного азота. Более подробную информацию можно узнать в нашем видео:

Химические свойства азота

Азот химически малоактивен из-за наличия все той же тройной связи. Она же обуславливает малую термическую устойчивость соединений азота при нагревании. В химических реакциях азот может проявлять себя и как окислитель, и как восстановитель благодаря широкому спектру возможных степеней окисления.

Как восстановитель азот реагирует:

Эти реакции проходят при температуре выше 1000 градусов Цельсия либо в электрическом заряде.

Как окислитель азот реагирует:

азот реагирует при обычных условиях только с литием, а с щелочноземельными металлами — только при нагревании;

реакция протекает обратимо в присутствии металлического железа в качестве катализатора.

Рассмотрим способы получения азота. В промышленности его получают фракционной перегонкой жидкого воздуха, а вот в лаборатории азот получают иначе. Вот лишь некоторые способы:

реакция взаимодействия хлорида аммония и нитрита натрия
NaNO2 + NH4Cl = N2 + NaCl + 2H2O

разложение некоторых солей аммония (на примере нитрита аммония)
NH4NO2 = N2 + 2H2O

Азот — основной компонент любого белка в организме человека. Давайте рассмотрим способы получения исходных компонентов для синтеза собственных белков.

Синтез белков из азота

Важнейшие соединения азота

Аммиак

В первую очередь поговорим о водородном соединении азота — аммиаке. Аммиак — бесцветный газ с характерным резким запахом. Давайте рассмотрим строение молекулы аммиака:

Строение молекулы аммиака

Аммиак имеет форму тригональной пирамиды. Этот газ очень ядовит и способен вызывать химический ожог глаз, а пары сильно раздражают слизистые оболочки органов дыхания. В то же время аммиак обладает достаточно высокой растворимостью в воде из-за образования водородных связей с молекулами воды. Вас когда-нибудь приводили в чувства после потери сознания ваткой, смоченной чем-то гадко пахнущим? Поздравляю, это было ваше первое знакомство с раствором аммиака в воде.

Поговорим теперь о химических свойствах этого газа.

В отличие от самого азота, аммиак является крайне реакционноспособным соединением. Так как азот находится в аммиаке в своей низшей степени окисления (-3), то аммиак проявляет только восстановительные свойства.

Например, аммиак реагирует с кислородом (при нагревании):

Реакция аммиака с кислородом

Как видно из уравнений, аммиак вступает в реакции окисления, а продукты его окисления напрямую зависят от силы окислителя и условий проведения реакций.

Со сложными веществами — окислителями аммиак реагирует следующим образом:

С кислотами аммиак реагирует благодаря своим осн?вным свойствам, что приводит к образованию различных солей:

А теперь рассмотрим получение аммиака. Различают два типа способов: промышленный и лабораторный.

Промышленный способ — синтез из простых веществ:

Промышленный способ получения аммиака

Лабораторный способ получения аммиака

В данном способе аммиак собирают в перевернутую вверх дном колбу, так как аммиак легче воздуха.

Синтез аммиака в лаборатории

Азотная кислота

Азотная кислота — одна из важнейших неорганических кислот. Это летучая бесцветная жидкость с резким запахом, которая способна смешиваться с водой в любых пропорциях.

Получают ее в промышленности в несколько этапов. Рассмотрим подробнее каждый из них:

Окисление аммиака кислородом воздуха на платиновом катализаторе
4NH3 + 5O2 = 4NO + 6H2O

Окисление оксида азота (II)
2NO + O2 = 2NO2

Поглощение образующегося оксида азота (IV) водой в избытке воздуха
4NO2 + O2 + 2H2O = 4HNO3

Для азотной кислоты характерны особые химические свойства исходя из ее концентрации.

Например, с металлами данная кислота никогда не будет реагировать с выделением газообразного водорода. Рассмотрим таблицу с примерами металлов с различными концентрациями азотной кислоты:

Реакции азотной кислоты с металлами

Также азотная кислота как сильный окислитель способна окислять некоторые неметаллы до их кислот. Давайте рассмотрим примеры:

Азотная кислота — сильный окислитель

Оксиды азота

В отличие от других химических элементов, азот образует большое число оксидов: N2O, NO, N2O3, NO2, N2O4 и N2O5, каждый из которых является кислотным. В таблице показали, какой оксид какой кислоте соответствует:

Оксиды азота

Оксид азота (I) N2O. Несолеобразующий оксид, представляет собой бесцветный газ с приятным запахом и сладковатым привкусом. По своей молярной массе тяжелее воздуха и растворим в воде. У этого оксида есть и другие названия, самое распространенное из них — закись азота. Оксид азота (I) применяли в медицине в качестве наркоза более 200 лет назад. При вдыхании этого газа человека охватывает радость и безудержный смех, отчего оксид получил еще одно название — веселящий газ.

Оксид азота (II) NO. Несолеобразующий оксид, который при нормальный условиях является бесцветным газом, плохо растворяется в воде и в больших концентрациях ядовит для человека.

Оксид азота (III) N2O3. Соединение очень неустойчивое и существует только при низких температурах. В твердом и жидком состоянии оксид азота (III) окрашен в ярко-синий цвет. При температуре выше 0 градусов разлагается до оксида азота (II) и оксида азота (IV).

Оксиды азота (IV) NO2 и N2O4. Твердый оксид азота (IV) бесцветный, так как состоит из молекул N2O4. При нагревании появляется коричневая окраска, которая усиливается с повышением температуры по мере увеличения NO2 в смеси. Эти оксиды хорошо растворимы в воде и взаимодействуют с ней.

Оксид азота (V) N2O5. Азотный ангидрид, который образуется в виде летучих бесцветных гигроскопичных кристаллов. Это крайне неустойчивое вещество, которое распадается в течение нескольких часов. При нагревании распадается со взрывом на оксид азота (IV) и газообразный кислород.

Порядок заполнения оболочек атома азота (N) электронами: 1s -> 2s -> 2p -> 3s -> 3p -> 4s -> 3d -> 4p -> 5s -> 4d -> 5p -> 6s -> 4f -> 5d -> 6p -> 7s -> 5f -> 6d -> 7p.

На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ — до 6, на ‘d’ — до 10 и на ‘f’ до 14

Азот имеет 7 электронов, заполним электронные оболочки в описанном выше порядке:

2 электрона на 1s-подуровне

2 электрона на 2s-подуровне

3 электрона на 2p-подуровне

Физические свойства

Азот – двухатомный (N2) газ без запаха и вкуса, плохо растворимый в воде. Азот может находиться в газообразном, жидком и твёрдом состояниях. В сжиженной форме азот имеет температуру кипения -196°С. При -209,86°C азот становится твёрдым. Под влиянием разных температур кристаллическая решётка твёрдого азота может изменяться, создавая модификации элемента.

Рис. 2. Жидкий и твёрдый азот.

Рис. 2. Жидкий и твёрдый азот.

Валентность N

Атомы азота в соединениях проявляют валентность V, IV, III, II, I.

Валентность азота характеризует способность атома N к образованию хмических связей. Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании химических соединений называются валентными электронами. Более обширное определение валентности это:

Число химических связей, которыми данный атом соединён с другими атомами

Валентность не имеет знака.

Первооткрыватели

У азота нет конкретного ученого, который считался бы первооткрывателем этого элемента. Точнее есть, но несколько. Выяснить, кому именно принадлежат лавры открытия, сейчас уже невозможно.

1772 год — важный год для химического элемента. Сразу четверо ученых вплотную приблизились к открытию азота. Это и британский химик Генри Кавендиш, и первооткрыватель кислорода Джозеф Пристли, и шведский химик-фармацевт Карл Шееле, и шотландский химик Даниэль Резерфорд. Все они в одно и то же время проводили различные исследования и эксперименты с газами. Эти люди близко подошли к открытию нового химического элемента. Но выделить кого-то из них в качестве однозначного первооткрывателя нельзя.


Применение

Несмотря на пассивность азота, элемент широко применяется в промышленности. Кроме того, азот входит в состав клеток, без него невозможно построение белка и ДНК.

Рис. 3. Азот в составе ДНК.

Рис. 3. Азот в составе ДНК.

Азот используется при производстве:

  • удобрений;
  • взрывчатых веществ;
  • медикаментов;
  • красителей;
  • пластмассы;
  • искусственных волокон;
  • аммиака.

Жидкий азот используется для охлаждения, заморозки, а также для окисления двигателей ракет. Оксид азота применяется в качестве наркоза и для производства аэрозолей.

Примеры решения задач

Задание Для получения аммиака провели реакцию между 67,2 м водорода и 44,8 м азота (н.у.). Каким газом будет загрязнен образовавшийся аммиак? Решение Запишем уравнение реакции: Стехиометрическое соотношение объемов реагирующих газов должно быть равно Найдем фактическое соотношение объемов водорода и азота: В фактическом соотношении азота больше, значит, полученный аммиак будет загрязнен азотом Ответ Аммиак будет загрязнен азотом

Читайте также: