Конденсатор переменной емкости своими руками
Добавил пользователь Алексей Ф. Обновлено: 08.10.2024
Самодельные КПЕ из фольгированного стеклотекстолита
Переменные конденсаторы, они же конденсаторы переменное емкости или КПЕ, используется во множестве устройств. Они нужны в генераторах, фильтрах, антенных тюнерах, некоторых видах антенн, и много где еще. Обратим внимание на тот факт, что в любительской радиосвязи, к примеру, трансивер может с легкостью выдавать 25 Вт или 100 Вт, максимально же разрешенная мощность составляет 1000 Вт. Понятно, что общедоступные маленькие КПЕ тут совершенно не годятся, а нужных для таких мощностей КПЕ в магазине вы попросту не найдете.
Подходящие большие КПЕ из старой радиоаппаратуры можно приобрести на Авито и досках объявлений радиолюбителей. Но цены там зачастую не низкие, к конденсаторам редко указывается их емкость, не представляется возможным найти два или более одинаковых конденсатора, плюс есть риски и неудобства, сопряженные с покупкой с рук. А между тем, изготовить переменный конденсатор в домашних условиях не так уж и трудно.
Идею я подсмотрел в статье Build Your Own Transmitting Air Variable Capacitors 2003-го года за авторством David Hammack (N4DFP). В своей статье Дэвид использует медные листы, которых у меня не оказалось. Но я прикинул, что с тем же успехом подойдет и медь на одностороннем фольгированном текстолите, которого у меня как раз в избытке. Почему бы не попробовать?
Сразу покажу, что у меня в итоге получилось. Вид спереди:
Конденсатор имеет пять прямоугольных пластин размером 20 x 50 x 1 мм, зафиксированных двумя длинными болтами M3. Пластины разделены гайками. Еще четыре пластины в форме полукруга с радиусом 25 мм крепятся на одном болте M3. Этот болт можно вращать при помощи ручки от потенциометра, которую я приклеил к болту при помощи эпоксидного клея. Все это хозяйство держится на каркасе из двух прямоугольных кусков листового пластика размером 30 x 50 мм. Для соединения с подвижными пластинами я использовал толстый медный провод, изогнутый в форме петли. Провод плотно прилегает к вращающемуся болту и закреплен на каркасе конденсатора с помощью термоклея. Капля припоя, которую можно видеть на втором фото, служит для ограничения углов поворота ручки. Понятно, что все работало бы и без нее. Но мне хотелось, чтобы ручка имела какие-то крайние полажения, а не просто крутилась во все стороны.
Fun fact! Текстолит толщиной 1 мм можно резать обычными ножницами для бумаги. А стоящая у меня на столе катушка припоя очень удачно оказалась диаметром именно 25 мм — по ней и обводил.
Емкость такой поделки меняется от 13 до 53 пФ. Увеличивая площадь пластин или их количество, можно получить хоть 1000 пФ. Не думаю, что кому-то могут понадобится подстроечные конденсаторы большей емкости. Но такой конденсатор будет не очень удобен, как из-за больших размеров, так и того факта, что небольшой поворот ручки будет приводить к сильному изменению емкости.
Возможное решение заключается в том, чтобы использовать описанный выше конденсатор только для точной подстройки, а для грубой подстройки использовать конденсаторы фиксированной емкости. Последние можно соединять параллельно при помощи переключения тумблеров с двумя контактными группами.
Пример самодельного конденсатора фиксированной емкости:
Конденсатор состоит из шести пластин 25 x 50 мм. Пластины были склеены при помощи эпоксидного клея. Все четные пластины соединены между собой, и аналогично соединены все нечетные. Емкость конденсатора составляет 270 пФ. Практическая ценность таких конденсаторов, по-видимому, не очень высока, поскольку высоковольтные керамические конденсаторы фиксированной емкости легко доступны и стоят недорого. Тем не менее, давайте рассмотрим и их тоже, на случай, если когда-нибудь понадобится работать с очень высокими напряжениями.
Fun fact! Альтернативный способ изготовления конденсатора фиксированной емкости заключается в том, чтобы просто взять кусок коаксиального кабеля. Типичный кабель RG58 обладает погонной емкостью около 100 пФ на один метр.
Зависимость емкости конденсатора от числа пластин выглядит следующим образом:
Можно заметить, что емкость растет пропорционально количеству слоев диэлектрика с точностью до ошибки измерения, что соответствует теории. Используя первую строчку, ради интереса можно посчитать диэлектрическую проницаемость используемого текстолита:
Это сходится с ожидаемым значением от 4.4 до 4.7.
На StackExchange подсказывают, что чтобы пробить подобные конденсаторы, нужно по крайней мере 3 кВ на 1 мм расстояния между пластинами — это в предположении, что ток пойдет по воздуху. Для надежности, рекомендуется использовать в качестве максимального напряжения половину от этого значения. Напряжение пробоя можно увеличить, увеличивая расстояние между пластинами. Но, как видно из приведенной выше формулы, в этом случае пострадает емкость, и придется увеличивать площадь и/или количество пластин. Более практичное решение заключается в том, чтобы вытравить 3 мм меди по границе пластин. Тогда напряжение пробоя составит порядка 20 кВ — напряжение пробоя 1 мм текстолита или 7 мм воздуха.
Каково будет максимальное напряжение на конденсаторе зависит от цепи, в которой планируется его использовать. Это нужно каждый раз моделировать или считать. Но чтобы оно превысило безопасные 10-15 кВ, придется постараться. В этом случае всегда можно просто увеличить расстояние между пластинами и использовать более толстый текстолит.
Fun fact! Само собой разумеется, ничто не мешает делегировать изготовление компонентов конденсатора вашему любимому производителю печатных плат.
Как видите, все оказалось достаточно просто. Очевидные плюсы самодельных КПЕ — низкая стоимость и доступность. Можно сделать сколько угодно ровно таких конденсаторов, каких нужно. Что же до времени, которое потребуется на изготовление конденсатора, я думаю, оно сопоставимо со временем, которое вы потратите на поиск готового, а также на переговоры с его продавцом.
Итак, первым делом был найден лист алюминия. Найден он был в магазине типа сделай сам в виде листа от бочки йогурта (толщина 0,3-0,4 мм). Из листа ножницами были вырезаны заготовки по чертежам:
Чертежи в формате SVG можно скачать по ссылке.
Всего было вырезано 17 заготовок пластин статора, и 16 — ротора. Все пластины были выпрямлены, потом в нужных местах были просверлены отверстия 6 мм под винты. Рекомендую сверлить однотипные заготовки разом, зажав их в тиски. После сверловки заготовки были зачищены от краски и защитного слоя (лист для йогурта был окрашен рекламными надписями с одной и пищевым слоем с другой стороны). В итоге получилась такая кучка заготовок:
Из пластмассы были вырезаны боковые стенки конденсатора размером примерно 100х70 мм.
Для скрепления пластин я использовал болты М6 длиной 110 мм, гайки М6 толщиной 4,5 мм, и шайбы.
Крепление пластин схематически показано на рисунке (вид сбоку):
Первая пластина статора крепится через 3-4 шайбы (в зависимости от их толщины), чтобы обеспечить необходимый зазор между пластинами ротора и статора, и зажимается гайками. Первая пластина ротора зажимается гайками с двух сторон, при этом между боковой стенкой и крепежом обеспечивается небольшой зазор, чтобы болт с пластинами ротора свободно вращался в отверстии.
На противоположной боковой стенке конденсатора необходимо реализовать токоприёмник и пружинный элемент. Я объединил две функции в одну с помощью изогнутой пластины из того же алюминиевого листа и наклейки из пенистого пластика:
После сборки окончательно выпрямляем пластины и добиваемся одинакового расстояния между пластинами при любых положениях ротора.
В итоге получился конденсатор с диапазоном изменения ёмкости 7-330 пФ. Стоимость материалов составила менее 10 долларов.
Что представляет собой такой элемент, как конденсатор? Это небольшой радиоэлемент со средоточенной электрической емкостью, образующейся двумя или же большим числом электродов. В некоторых случаях этот элемент еще называют обкладкой. Эти маленькие детали разделяются такой вещью, как диэлектрик (специальная бумага, тонкий слой слюды, керамики и т. д.). Емкость этой детали будет зависеть от таких показателей, как размер (площадь) обкладок, расстояние между этими элементами, а также от свойств самого диэлектрика.
Общая информация
Очень важный факт. Конденсатор имеет одно свойство, которое проявляется в цепи переменного тока. Для такого контура эта деталь будет являться сопротивлением, величина которого будет зависеть от частоты. Если частота увеличивается, то сопротивление будет уменьшаться, и наоборот.
Существуют основные единицы измерения, при помощи которых можно определить принадлежность того или иного конденсатора. К ним относят Фарад, микроФарад и т. д. Обозначение на элементах этих единиц, соответственно, такое: Ф, мкФ.
Элементы с переменной емкостью
Конденсатор переменной емкости имеет в своем составе такие части, как секции пластин из металлического материала. Одна из этих секций может осуществлять плавное движение по отношению ко второй. Во время этого движения происходит так, что пластины подвижной части, то есть ротора, чаще всего вводятся в зазоры, имеющиеся между пластинами неподвижной части — статора. Благодаря этому движению происходит следующее. Площадь перекрытия одних пластин другими изменяется, в результате чего изменяется и емкость переменного конденсатора.
Диэлектриком в таких элементах чаще всего выступает воздух. Хотя стоит отметить, что, если говорить об аппаратуре с малыми габаритами, допустим, о транзисторных карманных приемниках, то в них чаще используются конденсаторы переменной емкости с твердым диэлектриком. В качестве этого элемента там используется износостойкое и высокочастотное сырье. Чаще всего это фторопласт или полиэтилен.
Параметры КПЕ
Основным параметром для таких деталей, который поможет определить возможность работы устройства в колебательном контуре, стала минимальная и максимальная емкость. Данный показатель чаще всего указывается рядом с самим конденсатором переменной емкости на схеме устройства.
Стоит отметить, что в таких устройствах, как радиоприемники и радиопередатчики, используется сразу несколько колебательных контуров. Для того чтобы настроить работу сразу нескольких частей, используют блоки конденсаторов. Один блок чаще всего состоит из двух, трех или более секций КПЕ.
Роторная часть для таких блоков обычно крепится на один общий вал для всех конденсаторов переменной емкости. Это делается для удобства, так как при вращении всего одного ротора появляется возможность изменения емкости сразу всех устройств, находящихся в этой секции.
Схемы КПЕ
Важно отметить, что на схеме каждый конденсатор, который входит в блок, отображается отдельно. Для того чтобы указать, что емкость переменного конденсатора из этого блока и остальных элементов может быть изменена при помощи всего одной ручки, управляющей всем блоком, те стрелки, который обозначают регулирование, должны быть соединены одной штриховой линией механической связи.
Стоит отметить, что есть некоторые разновидности таких КПЕ. Один из видов — это дифференциальные конденсаторы, которые нашли свое применение, к примеру, в плечах емкостных мостов. Особенностью этого вида будет то, что он имеет два ряда статорных пластин и один ряд роторных. Расположение групп пластин таково: когда одна группа выходит из зазора, вторая тут же занимает их место. В этот момент емкость конденсатора переменного тока дифференциального типа будет уменьшаться между пластинами первой группы статора и группой ротора. А вот между второй группой пластин статора и группой ротора этот показатель будет расти. Таким образом, суммарное значение будет все время оставаться неизменным.
Подстроечные КПЕ
Еще один вид КПЕ — это подстроечные конденсаторы. Их используют для того, чтобы задать начальную емкость колебательного контура, которая будет определять максимальную частоту его настройки. Емкость конденсатора в цепи переменного тока этого типа может быть изменена от нескольких единиц пикоФарадов до нескольких десятков пикоФарадов. В некоторых случаях может быть достигнута и большая емкость.
К таким типам КПЕ предъявляется основное требование, которое заключается в возможности плавно изменять показатель емкости. Также этот конденсатор должен обеспечивать надежную фиксацию ротора в заданном положении.
Конструкция КПК
Наиболее распространенным типом подстроечного конденсатора является керамический. Конструкция этого устройства следующая. Основание детали — керамический статор, а также подвижное основание, закрепленное на нем в форме диска — ротор. Обкладками в данном элементе служат тонкие слои серебра. Наносятся они при помощи вжигания. Вжигание осуществляется на статор, а также на наружную стенку ротора.
Для того чтобы изменить или определить емкость переменного конденсатора этого типа, необходимо вращать ротор. Если говорить о наиболее простой аппаратуре, то в ней чаще всего используется проволочный подстроечный конденсатор. Состоит данная деталь из отрезка медной проволоки диаметром 1-2 мм. Длина же этого элемента 15-20 мм. На проволоку очень плотно, виток к витку, наматывается изолированный провод диаметром 0,2-0,3 мм. Для того чтобы изменить емкость в данном устройстве, необходимо отматывать провод. Чтобы в это время не сползла обмотка с него, необходимо пропитать ее любым изоляционным составом.
Емкость сопротивления конденсатора в цепи переменного тока
Здесь важно отметить, что ток в цепи, в которой имеется конденсатор, может протекать лишь при условии, что будет изменяться приложенное напряжение. Также нужно понимать, что сила тока, который будет циркулировать в цепи, во время разряда и заряда этого элемента будет тем больше, чем больше емкость самого конденсатора, а также будет зависеть от скорости, с которой происходят изменения электродвижущей силы (ЭДС).
Еще одно свойство. Конденсатор с переменной емкостью, который включен в цепь именно с переменным током, будет являться для этой цепи сопротивлением. Другими словами, величина именно емкостного сопротивления будет тем меньше, чем больше будет значение самой емкости и чем выше будет частота действующего тока. Однако это утверждение справедливо лишь для цепи, в которой ток переменный. Емкость конденсатора равна бесконечности, то есть его сопротивление будет бесконечно, если разместить такой элемент в цепи с постоянным током.
Основные параметры для КПЕ
Существует несколько основных параметров для такого рода конденсаторов.
Один из основных — это закон изменения емкости. Данный закон определяет характер изменения емкости. Изменение этого параметра будет происходить в зависимости от угла поворота или же от линейного перемещения подвижной части пластин конденсатора по отношению к их неподвижным частям.
Еще одно из свойств — это температурная стабильность. Данный показатель напрямую зависит от конструкции самого конденсатора. Чаще всего данный показатель является положительным, а для конденсаторов с воздухом в качестве диэлектрика показатель не превышает (200:300) 10-61/град. Если говорить о конденсаторах с твердым диэлектриком, то у них это значение превышает данный показатель.
Простой способ сделать конденсатор переменной емкости в домашних условиях из подручных средств. Для оси лучше .
Обычный кпе,имеет 6 выводов,содержит 4 переменных и 4 подстроечных конденсатора.Если их подключить параллельно .
Этот и подобные ему эксперименты Вы всегда можете повторить у себя дома. Я не использую необычных и редких .
Тут такое дело столкнулся с тем что потребовался капаэт конденсатор переменной емкости Нона большое напряжение .
00:00 ? Конденсатор разного типа 01:19 ? Зачем нужны конденсаторы 02:03 ? Полярные и не полярные конденсаторы .
А давайте проверим нельзя ли сделать конденсатор что называется на коленки и из подручных материалов. Мы уже .
Из двух полярных электролитических конденсаторов можно сделать один неполярный.Надо учитывать,что при мощной .
Конденсатор переменной емкости легко сделать из обыкновенного конденсатора как полярного так и "бесполярного" с .
В этом видео я соберу самодельный антенный тюнер (согласующие устройство) по схеме П-контура. После сборки .
Как использовать электрометр для измерения разности потенциалов? От чего зависит электроёмкость плоского .
На видео показывается самодельный верньер (понижающий редуктор) для конденсатора переменной ёмкости. Для его .
Как найти замыкание пластин в конденсаторе переменной ёмкости с воздушным диэлектриком КУПИТЕ, ЧТО-НИБУДЬ ИЗ .
Хотелось бы пару слов сказать о самодельных конденсаторах то есть почему я их делу сама не допустим покупаю какими .
Конденсатор не проводит постоянный электрический ток, однако проводит переменный ток, что происходит благодаря его .
В этой статье мастер расскажет нам, как своими руками сделать конденсатор переменной емкости. Такой конденсатор очень легко установить на заданную величину емкости.
Для изготовления такого конденсатора нужны следующие
Инструменты и материалы:-Алюминиевая фольга;
-Скотч;
-Двусторонний скотч;
-Шпилька с резьбой диаметром 2 мм и длиной 90 мм;
-Подшипник с внутренним диаметром 4 мм и внешним диаметром 12 мм;
-Болт M4 длиной 80 мм;
-Гайки M4;
-Провод;
-Бумага;
-Маркер;
-3D-принтер;-Мультиметр;
Шаг первый: принцип работы конденсаторов
Конденсатор – элемент, способный накапливать электрическую энергию. Конденсатор состоит из металлических электродов – обкладок, между которыми находится диэлектрик.
Основное назначение конденсатора – способность накапливать заряд. Принцип работы этого изделия основан на притяжении разноименных зарядов в электрической цепи.
Когда обкладки конденсатора подключают к источнику питания, электрические заряды от положительного и отрицательного зажима ИП устремляются к обкладкам, скапливаясь на них, пока он не зарядится до номинальной емкости.
Заряды, скопившиеся на каждой из обкладок, противоположны. Соответственно та обкладка, что была подключена к плюсовому выводу источника питания – заряжена положительно, а та, что к минусовому – отрицательно. Принцип работы этого изделия основан на притяжении разноименных зарядов в электрической цепи.
В конденсаторе энергия хранится в виде электрического поля, которое индуцируется между параллельными пластинами.
Емкость конденсатора высчитывается по формуле: C = e * A / d где,
e: зависит от диэлектрика, A: площадь параллельных пластин, d: расстояние между пластинами
Формула емкости показывает, что значение емкости зависит от площади параллельных пластин и расстояния между ними, а также от того, какой материал (диэлектрик)находится между ними.
Шаг второй: дизайн
Чтобы сделать переменный конденсатор, нужно сделать изменяемыми некоторые параметры, от которых зависит емкость. Как мы видели на предыдущем шаге, значение емкости зависит от площади пластин и расстояния между ними.
Конструкция переменного конденсатора будет состоять из двух цилиндров из алюминиевой фольги, площадь взаимодействия которых будет изменяться вращением стержня с резьбой. Это обеспечит точный контроль над параметром емкости.
Шаг второй: 3D-печать
Есть две основные и несколько боковых частей. Все детали печатаются без опор с тремя периметрами стен.
Мастер также прикрепил файл Step на случай, если пользователь захочет настроить модель под свои нужды.
Примечание. Детали подшипника не являются обязательными, если есть подшипник с внутренним диаметром 4 мм и внешним диаметром 12 мм.
Файлы для печати можно скачать ниже.
Variable Capacitor.stepLeft Body.stlRight Body.stlKnob.stlInner Foil Cover.stlBearing Front Covering.stlBearing Internal Body.stl
Шаг третий: фольга
Пока детали печатаются самое время подготовить фольгу.
Нарисуйте два прямоугольника шириной 35 мм и длиной, равной окружности внутреннего и внешнего цилиндров (60 и 63 мм).
Поскольку алюминиевый лист имеет толщину всего 20 микрон, он довольно хрупкий, поэтому нужно добавить слой бумаги для его поддержки.
Размеры бумаги для внутреннего цилиндра такой же 35Х60 мм. Для внешнего цилиндра размер бумаги 47Х63 мм. 12 мм будут оборачиваться вокруг кольца.
Шаг четвертый: провода
Провод к фольге припаять не просто, но здесь и не нужно такое прочное соединение. С концов проводов снимаем изоляцию. Прижимаем жилы к фольге. Фиксируем скотчем.
Шаг пятый: диэлектрик
Внутренний и внешний цилиндры будут обращены фольгой друг к другу. Между ними нужен какой то диэлектрик. Расстояние между двумя слоями обратно пропорционально емкости, поэтом нужно, чтобы изоляционный материал был как можно тоньше.
Мастер собирается использовать скотч для изоляции материала. С его помощью также можно приклеить фольгу к бумажным листам.
Сначала нужно приклеить на бумагу небольшой кусочек двустороннего скотча и правильно расположите фольгу на бумаге. Затем фиксируем обычным скотчем.
Шаг шестой: сборка
Теперь можно приступить к сборке конденсатора.
По центру ручки-шестеренки приклеиваем эпоксидной смолой, резьбовой стержень.
Устанавливаем роликовый подшипник и фиксируем гайкой.
Дальше нужно подготовить противоположный узел. Внутрь посадочного места устанавливаем и приклеиваем гайку. Вокруг кольца приклеиваем полоску двустороннего скотча.
Дальше снимаем защитный слой с двустороннего скотча. Пропускаем провод в отверстие основания. Приклеиваем обкладку вокруг кольца. Фиксируем сверху малярным скотчем.
Внутренняя часть состоит из двух колец, на которые будет наматываться обкладка фольгой наружу. Крепится фольга с помощью двустороннего скотча. Стык заклеивается скотчем.
Дальше продеваем через отверстия провода.
В левом и правом узле есть по три отверстия для шпилек. Причем на левом узле диаметр отверстий меньше. В них и нужно установить и приклеить шпильки. Затем на шпильки устанавливается второй узел. Внутренний цилиндр вставляется во внешний. Закручивается центральная шпилька.
Шаг седьмой: тестирование
Дальше мастер измеряет емкость с помощью мультиметра. Тот, который он сделал, имеет емкость 0-45 пФ.
Если нужен больший конденсатор, можно сделать несколько слоев или увеличить длину цилиндров.
Все готово. На видео ниже можно посмотреть процесс сборки и тестирования конденсатора.
Самодельный конденсатор переменной ёмкости — Embedded.by
Итак, первым делом был найден лист алюминия. Найден он был в магазине типа сделай сам в виде листа от бочки йогурта (толщина 0,3-0,4 мм). Из листа ножницами были вырезаны заготовки по чертежам:
Чертежи в формате SVG можно скачать по ссылке.
Всего было вырезано 17 заготовок пластин статора, и 16 — ротора. Все пластины были выпрямлены, потом в нужных местах были просверлены отверстия 6 мм под винты. Рекомендую сверлить однотипные заготовки разом, зажав их в тиски. После сверловки заготовки были зачищены от краски и защитного слоя (лист для йогурта был окрашен рекламными надписями с одной и пищевым слоем с другой стороны). В итоге получилась такая кучка заготовок:
Из пластмассы были вырезаны боковые стенки конденсатора размером примерно 100х70 мм.
Для скрепления пластин я использовал болты М6 длиной 110 мм, гайки М6 толщиной 4,5 мм, и шайбы.
Крепление пластин схематически показано на рисунке (вид сбоку):
Первая пластина статора крепится через 3-4 шайбы (в зависимости от их толщины), чтобы обеспечить необходимый зазор между пластинами ротора и статора, и зажимается гайками. Первая пластина ротора зажимается гайками с двух сторон, при этом между боковой стенкой и крепежом обеспечивается небольшой зазор, чтобы болт с пластинами ротора свободно вращался в отверстии.
На противоположной боковой стенке конденсатора необходимо реализовать токоприёмник и пружинный элемент. Я объединил две функции в одну с помощью изогнутой пластины из того же алюминиевого листа и наклейки из пенистого пластика:
После сборки окончательно выпрямляем пластины и добиваемся одинакового расстояния между пластинами при любых положениях ротора.
В итоге получился конденсатор с диапазоном изменения ёмкости 7-330 пФ. Стоимость материалов составила менее 10 долларов.
Измеритель емкости конденсаторов своими руками: принцип, схема
Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.
Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.
Обозначения на конденсаторах
Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.
Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).
Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.
Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.
Вычисления с помощью формул электротехники
Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.
Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.
Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t >= RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.
Схема измерения
Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.
Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.
Измерительные приборы
Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.
В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.
В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.
Самодельный С — метр
Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.
Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.
Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.
Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.
При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.
Конструкция и детали
R1, R5 6,8k R12 12k R10 100k C1 47nF
R2, R6 51k R13 1,2k R11 100k C2 470pF
R3, R7 68k R14 120 C3 0,47mkF
R4, R8 510k R15 13
Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.
Читайте также: