Феррорезонансный стабилизатор напряжения своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 08.10.2024

Феррорезонансный стабилизатор напряжения уже давно активно применяется не только в быту, но и в промышленности. Устройства этого класса позволяют выровнять напряжение переменного типа. В основе принципа функционирования заключается эффект электромагнитного резонанса в колебательном контуре. Такие нормализаторы обладают массой достоинств, но также имеют и свои недостатки.

Феррорезонансные явления в электрических сетях

Основные факторы, которые порождают феррорезонансные явления в электрических сетях – это элементы ёмкостного и индуктивного типа. Они способны формировать колебательные контуры в периоды переключения. Этот эффект особо заметен в трансформаторах силового типа, линейного вольтодобавочного, шунтирующих контурах и в аналогичных устройствах, которые оборудуются массивной обмоткой.

Данное явление бывает 2 типов: резонанс токов и напряжения.

Феррорезонанс напряжений возможен, когда в сети имеется индуктивность, характеризующаяся нелинейным вольт-амперным свойством. Данная характеристика свойственна катушкам индуктивности, где сердечники производятся из ферромагнитных компонентов. Особенно это касается выпрямителей линейки НКФ. Такое негативное явление обуславливается небольшим показателем сопротивлений омического и индуктивного типов по отношению к силовым трансформаторам.

Феррорезонанс в трансформаторе напряжения


Когда трансформатор напряжения подключается к сети, в ней формируются последовательно совмещённые LC-цепи, являющие собой контур резонансного типа. При последовательном подключении индуктивного элемента с нелинейным вольт-амперным свойством к элементу ёмкостного типа напряжение в этой зоне цепи характеризуется как активно-индуктивное.

По окончании определённого временного периода значение напряжения на индуктивном элементе становится пиковым, магнитопровод питается, а напряжение на компоненте ёмкостного типа продолжает расти. Феррорезонанс в трансформаторе напряжения наступает, когда напряжение индуктивности и ёмкостного элемента становится равнозначным.

Феррорезонансные стабилизаторы


Феррорезонансные выпрямители не оборудуются встроенным вольтметром, вследствие чего сложно замерять выходной показатель напряжения сети. Отрегулировать величину напряжения собственноручно не получится. Стабилизаторы феррорезонансного типа частично искажают реальные показания, величина погрешности составляет до 12%.

Тем, кто долго пользуется такими устройствами, необходимо помнить, что они способны излучать магнитное поле, которое может нарушить правильное функционирование бытовой электротехники. Стабилизаторы такого класса настраиваются в заводских условиях, никаких дополнительных настроек в быту они не требуют.

Влияние стабилизатора на технику

Феррорезонансный стабилизатор напряжения, принцип работы которого непрост, воздействует на бытовую технику следующим образом:

  • Радиоприёмник – чувствительность приёма сигнала может быть уменьшена, показатель выходной мощности существенно снижается.
  • Музыкальный центр – выходная мощность такой техники может существенно снизиться, стирание и запись новых дисков значительно ухудшаются.
  • Телевизор – при подсоединении к стабилизатору можно наблюдать значительное снижение качества картинки на ТВ, отдельные цвета передаются неправильно.

Электрическая схема современных нормализаторов феррорезонансного типа улучшена, что позволяет им выдерживать большие нагрузки. Такие устройства могут гарантировать точную регулировку сетевого напряжения. Процедура корректировки выполняется трансформатором.

Режимы эксплуатации

Эксплуатационные режимы стабилизаторов зависят от ряда факторов. Прямое влияние имеет показатель мощности и класс устройства. Мощностные характеристики прибора могут быть разными, выбирать их надо с учётом типа подсоединяемой электротехники.

Режимы функционирования выпрямителя зависят от таких типов нагрузки:

  • индуктивная;
  • активная;
  • ёмкостная.

Активная нагрузка в чистой форме наблюдается крайне редко. Она необходима только в тех цепях, где переменное значение устройства не имеет ограничений. Нагрузки ёмкостного типа могут применяться только для тех выпрямителей, которые обладают невысокой мощностью.

Принцип действия феррорезонансных стабилизаторов


Обмотка первичного типа, на которую поступает входное напряжение, находится на магнитопроводе. Он обладает большим поперечным сечением, что позволяет держать сердечник в ненасыщенном состоянии. На входе напряжение формирует магнитные потоки.

На зажимах обмотки вторичного типа формируется выходное напряжение. К этой обмотке подсоединяется нагрузка, которая находится на сердечнике, обладает небольшим сечением и пребывает в насыщенном состоянии. При аномалиях сетевого напряжения и магнитного потока его значение фактически не модифицируется, а также неизменным остаётся показатель ЭДС. Во время увеличения магнитного потока некоторая его доля будет замкнута на магнитном шунте.

Магнитный поток принимает синусоидальную форму и при его подходе к амплитудному показателю отдельный его участок переходит в режим насыщения. Повышение магнитного потока при этом прекращается. Замыкание потока по магнитному шунту будет осуществляться лишь тогда, когда показатель магнитного потока сравнится с амплитудным.

Наличие конденсатора позволяет феррорезонансному стабилизатору работать с увеличенным мощностным коэффициентом. Показатель стабилизации зависит от уровня наклона кривой горизонтального типа по отношению к абсциссе. Наклон данного участка значительный, поэтому обрести высокий уровень стабилизации без вспомогательного оборудования невозможно.

Достоинства и недостатки

Среди ключевых плюсов феррорезонансных выпрямителей можно отметить:

  • стойкость к перегрузкам;
  • обширный интервал эксплуатационных значений;
  • быстрота регулировки;
  • ток обретает форму синуса;
  • высокая точность выравнивания.

Но при всех этих преимуществах имеются у приборов данного класса и свои минусы:

  • Качество функционирования зависит от показателя нагрузки.
  • При работе формируются внешние электромагнитные помехи.
  • Нестабильное функционирование при небольших нагрузках.
  • Высокие показатели массы и размеров.
  • Возникновение шума при работе.

Большинство современных моделей лишены таких недостатков, но они выделяются немалой стоимостью, порой выше, нежели цена ИБП. Также устройства не оборудуются вольтметром, что лишает возможности их регулировки.

Советы по выбору

Конструкция выпрямителей постоянно модернизируется, повышается качество их схем, что позволяет переносить значительные феррорезонансные перенапряжения. Современные модели выделяются высоким уровнем быстродействия, точностью настройки и длительным эксплуатационным сроком. Режимы устанавливаются мощностными характеристиками прибора и его типом.

Основное условие выбора феррорезонансного стабилизатора – место его подсоединения. Обычно его устанавливают на входе электросети в помещение либо вблизи бытовой техники. Если выпрямитель устанавливается для всей техники, необходимо выбирать устройства с высоким уровнем мощности и подключать их сразу же за распределительным щитком.

Феррорезонансный стабилизатор напряжения своими руками

Феррорезонансная схема является наиболее простой для собственноручного изготовления. В основе её функционирования лежит эффект магнитного резонанса.

Конструкцию довольно мощного выпрямителя феррорезонансного типа можно собрать из трёх элементов:

  • первичного дросселя;
  • вторичного дросселя;
  • конденсатора.


При этом простота такого варианта сопровождается целым набором неудобств. Мощный нормализатор, изготовленный по феррорезонансной схеме, выходит массивным, громоздким и тяжёлым.

Феррорезонансный стабилизатор напряжения нашел широкое распространение в различных сферах промышленности и в быту. Такие феррорезонансные стабилизаторы напряжения дают возможность выровнять переменное напряжение. Также такие устройства имеют и недостатки, которые необходимо рассмотреть.

Феррорезонансный стабилизатор напряжения

В настоящее время существует стандарт, по которому напряжение на выходе должно находиться в интервале 0,9-1,05 от номинального значения. Эта норма была определена давно и все устройства должны ей соответствовать. Напряжение сети на выходе должно равняться 197-230 В. Перед приобретением следует ознакомиться с однофазными моделями.

Феррорезонансные стабилизаторы

Такие устройства не оснащаются вольтметром, поэтому будет трудно понять, какая величина напряжения сети получается на выходе. Самому не получится отрегулировать напряжение. Если для вас это не критично, то такой вид стабилизатора хорошо подходит для вас. Феррорезонансные устройства могут частично искажать величину показаний, погрешность может доходить до 12%.

Если вы долгое время применяете такой прибор, то нужно знать, что он способен испускать магнитное поле, влияющее на функционирование бытовых приборов. Эти стабилизаторы настраивают в заводских условиях, поэтому после его монтажа нужно просто подключить в работу.

Влияние стабилизатора на технику

  1. Магнитофоны. Мощность на выходе таких устройств может сильно уменьшиться. Значительно ухудшается стирание записи.
  2. Радиоприемники. Такая аппаратура может снижать чувствительность, и выход мощности заметно снижается.
  3. Телевизоры. Если подсоединить прибор к телевизору, то можно увидеть заметное снижение качества изображения. Также некоторые цвета отображаются неверно.

Феррорезонансные стабилизаторы могут обладать негативными факторами. Если у вас затруднения с выбором подобной аппаратуры, то следует ознакомиться с правилами подбора.

Бытовые электрические устройства постепенно становятся более качественными. Поэтому изготовители приборов такого вида тоже стараются сделать качественными свои изделия. Они делают лучше электрическую схему, позволяющую выдержать повышенные нагрузки.

Феррорезонансный стабилизатор напряжения

Теперь это устройство может обеспечивать точную настройку напряжения сети. Процесс коррекции и выравнивания напряжения осуществляется трансформатором. При надобности он способен уменьшать или увеличивать длину вторичной обмотки.

Режимы эксплуатации

Эти режимы чаще всего зависят от различных факторов. На режим влияет мощность и вид прибора. Мощность устройства может быть различной и подбирать ее нужно, учитывая вид подключаемых устройств, которые планируется подсоединять для работы. Режимы работы выпрямляющего прибора зависят от следующих видов нагрузки:

  • Индуктивная.
  • Емкостная.
  • Активная.

Чисто активная нагрузка существует очень редко. Она требуется только в цепях без ограничения переменного значения прибора. Если вам нужно применить емкостную нагрузку, то нужно знать, что она служит только для стабилизаторов, имеющих малую мощность. Реакция определяется емкостью сопротивления, намного меньшего, чем нагрузка.

Принцип действия феррорезонансных стабилизаторов

Первичная обмотка, на которую приходит напряжение входа, находится на участке 2 магнитопровода. Он имеет значительное поперечное сечение, чтобы сердечник был в ненасыщенном состоянии. На входе напряжение образует магнитный поток Ф2.

Феррорезонансный стабилизатор напряжения

На зажимах вторичной обмотки создается напряжение выхода. К ней подключается нагрузка, находящаяся на 3 участке сердечника, и имеет малое сечение, и насыщенное состояние. при отклонениях напряжения сети и магнитного потока, величина его почти не меняется, а также не изменится ЭДС. При повышении магнитного потока некоторая часть его будет замыкаться по магнитному шунту.

Поток Ф2 становится синусоидальным. Если поток Ф2 подходит к амплитудной величине, то третий участок переходит в насыщение, а магнитный поток перестает повышаться, и возникает поток Ф1. В результате поток по магнитному шунту будет замыкаться только тогда, когда магнитный поток №2 по величине сравнивается с амплитудным. Это создает поток Ф3 несинусоидальным, а напряжение становится тоже не синусоидальным.

Феррорезонансный стабилизатор напряжения

Наличие конденсатора дает возможность прибору работать с повышенным коэффициентом мощности. А коэффициент стабилизации зависит от наклона горизонтальной кривой 2 к абсциссе. Этот участок обладает большим наклоном, поэтому получить большую стабилизацию без вспомогательных приборов не получится. Прямая передача тока дает возможность добиться повышенного усиления.

Достоинства

  • Невосприимчивость перегрузок.
  • Широкий интервал эксплуатационных величин.
  • Повышенная скорость регулировки.
  • Ток в форме синуса.
  • Повышенная точность выравнивания.

Недостатки

  • От величины нагрузки зависит качество работы.
  • Образование наружных электромагнитных помех.
  • При малой нагрузке плохая работа.
  • Плохие параметры веса и габаритов.
  • Повышенная шумность работы.

Современные устройства не обладают такими недостатками, но их стоимость часто больше источника бесперебойного питания. Также такие устройства не оснащены вольтметром. Отрегулировать прибор нет возможности.

Советы по выбору

Режимы определяются мощностью устройств и их типом. К устройствам с реактивной нагрузкой можно отнести те, которые имеют электрический двигатель – кондиционеры, нагреватели, вентиляторы.

Если нужно купить феррорезонансный прибор, то нужно учесть место его подключения. Это выполняется обычно на входе в помещение, или в непосредственной близости с бытовым устройством. Если планируется производить установку для всех устройств, то лучше подобрать систему стабилизации по необходимой мощности и подключить стабилизатор сразу за прибором учета энергии.

Идея: феррорезонансный стаб после ВЧ-инвертора

Сочетает в себе высокий коэфф-т стабилизации феррорезонансного стабилизатора
с малогабаритностью ВЧ-инвертора

Как вам такая задумка?

Сочетает в себе высокий коэфф-т стабилизации феррорезонансного стабилизатора
с малогабаритностью ВЧ-инвертора

Как вам такая задумка?

Нужно пробовать. Хотя бы в симуляторе. Идея хорошая, но почему-то не встречал реализаций. Взять за основу схему старого стабилизатора для телевизора? Хотя, помню, КПД был не очень высок - стабилизатор грелся. Ещё нужно смотреть форму тока, потребляемую от инвертора - если она со всплесками, то толку от феррорезонансности нет - проще поставить обычный дроссель и конденсатор - выгоды от экономии макс. тока ключей и высокого коэффициента заполнения может не оказаться.

- А вы не знаете, что на производстве шум выше 82dB считается вредным для здоровья и наушники обязательны?
- Вы абсолютно правы, коллега. Послушал через АС производственный шум - выше 82 дБ не могу. А вот музыку на 100 дБ - только в путь! (c) RSD

Конечно есть. Они все, из нелинейных, насыщающиеся. Каким симулятором пользуетесь? Я умудрялся моделировать нелинейный сердечник даже в LTSpice. А в бытность студентом легко это делал MicroCap V. Там была программа для подбора параметров моделей и не сложно было получить модель любого магнитного материала по известной петле гистерезиса. Насыщающиеся сердечники имеют просто более резкое насыщение - более пологие хвосты петли гистерезиса при узкой центральной части.

- А вы не знаете, что на производстве шум выше 82dB считается вредным для здоровья и наушники обязательны?
- Вы абсолютно правы, коллега. Послушал через АС производственный шум - выше 82 дБ не могу. А вот музыку на 100 дБ - только в путь! (c) RSD

Конечно есть. Они все, из нелинейных, насыщающиеся. Каким симулятором пользуетесь? Я умудрялся моделировать нелинейный сердечник даже в LTSpice. А в бытность студентом легко это делал MicroCap V. Там была программа для подбора параметров моделей и не сложно было получить модель любого магнитного материала по известной петле гистерезиса. Насыщающиеся сердечники имеют просто более резкое насыщение - более пологие хвосты петли гистерезиса при узкой центральной части.

Как помню (дело было в 2000-2004 годах), запускаешь программу по созданию и оптимизации моделей. Создаёшь новую модель сердечника. Вводишь вручную точки кривой гистерезиса магнитного материала - хоть из графика от производителя, хоть по паспортным цифрам, хоть по натурным испытаниям. Программа рассчитывает параметры для модели и показыает расхождение между моделью и заданными точками. Сохраняешь модель. Потом используешь сердечник в схеме, связывая с ним катушки индуктивности. Там самое сложное было - разобраться с размерностями - где Гауссы, Эрстеды, Теслы, сантиметры и как их перевести одно в другое. Помню, нужно было переводить в Эрстеды из Тесла и из Амперов на метр в гауссы. После перевода всё срасталось.
При моделировании по данным, полученным при замере сердечника, получал совпадение модели с железом с точностью 7..5 и даже 2.5 процента.

- А вы не знаете, что на производстве шум выше 82dB считается вредным для здоровья и наушники обязательны?
- Вы абсолютно правы, коллега. Послушал через АС производственный шум - выше 82 дБ не могу. А вот музыку на 100 дБ - только в путь! (c) RSD

Феррорезонансный стабилизатор стабилизирует только напряжение, выходной импеданс большой, нелинейный и зависит от нагрузки.
ФР стабилизаторы предназначены для устройств с постоянным потреблением мощности, напр. электрических печей.

ВЧ инвертор выдаст синусоиду? На прямоугольнике разве получиться эффект стабилизации? Или в насыщении или нет, никаких промежуточных состояний.

В природе существуют такие устройства, называются магнитные усилители, в них небольшим управляющим током подмагничивания можно резко изменить реактивное сопротивление регулирующего дросселя, и, соответственно, напряжение на нагрузке после этого дросселя. В технике в своё время применялось при частоте сети 400 Гц. На 50 Гц слишком массивными получаются железяки регулирующих дросселей. По такому принципу можно получить большой коэффициент стабилизации при "почти неубиваемых компонентах". Коэффициент стабилизации зависит от маломощного усилителя рассогласования на 2х-3х транзисторах.

Но с другой стороны если имеем ВЧ импульсный генератор, то не проще ли сразу регулировать выход коэффициентом заполнения?

"Источники электропитания на полупроводниковых приборах. Проектирование и расчёт", под ред Додика С.Д. и др. "Советское радио" 1969г. Глава VIII. Схемы управления в стабилизаторах напряжения на магнитных усилителях, стр. 350 - 369.

Липман Р.А. и др. Магнитные усилители постоянного тока с самонасыщением. Изд-во МЭИ, 1966.

Читайте также: