Электрожумар своими руками

Добавил пользователь Alex
Обновлено: 03.09.2024

Активный читатель, комментатор и Автор блога СамЭлектрик.ру Алексей Филиппов всесторонне рассматривает и справедливо критикует патент на изобретение и реальный прибор, который якобы позволяет экономить электроэнергию.

Экономить электроэнергию и экономить деньги – две большие разницы, о чем я подробно пишу в своей статье про Способы экономии электроэнергии .

Кроме того, статья Алексея тесно связано с моей статьёй “ Способы хищения электроэнергии ” , которая была значительно урезана по требованию Роскомнадзора.

Прибор продается в интернете, стоит очень недёшево, и данная статья – отзыв об этом приборе.

Итак, статья Автора:

МОЖНО ЛИ ЗАКОННО ОБМАНУТЬ ЭЛЕКТРОСЧЕТЧИК?

Кажется, не так давно повсюду активно продавали некую коробочку, не помню название, которая экономит электричество. Я как то сразу заподозрил подвох, но было любопытно, а потом мои подозрения подтвердились, когда я увидел вскрытие такой коробочки, а в ней оказалось установлен обычный конденсатор и пара индикаторных светодиодов со схемой для их питания. Не скажу, что это устройство совсем бесполезное или фейк, но и толку от него мало.

В рекламе на видео демонстрировали люминесцентный светильник, потребление тока которым уменьшалось при подключении “волшебного и очень нужного” устройства. После того как я увидел что внутри, то понял как это работает, устройство попросту компенсирует реактивную нагрузку, светильник использованный в рекламе имел дроссельный балласт.

Если нагрузка будет иметь резистивный или емкостной характер, или слабо индуктивный (cos f > 0,9), то влияния прибора на потребление электроэнергии практически не будет. Однако, в некоторых случаях, прибор позволяет действительно немного реально сэкономить, без обмана. Что не скажешь о приборе, который будет рассмотрен ниже.

Вопросов несколько, почему это устройство продавали нам так дорого, что будет если устройство включено в сеть, а реактивной, то-есть именно индуктивной нагрузки нет… зачем оно вообще нужно, если наши счетчики вообще не учитывают реактивную нагрузку…

Какая-то экономия конечно будет, но мизерная, за счет снижения потерь на сопротивлении проводов идущих от счётчика, до той розетки где включен прибор и то только при идеальных условиях как в рекламе – индуктивная реактивная нагрузка! Одним словом выброшенные деньги за покупку!

Потери и виды нагрузок

Немного теории, но без заумных формул, так сказать для чайников. Те кто изучал электро физику знают, что существуют потери при передаче электроэнергии, а в сетях с переменным током всё намного сложнее чем для случая с постоянным током, кроме закона Ома работают ещё куча всяких законов и эффектов, от которых растут потери.

Весомый вклад в потери, кроме всех прочих, которые мы рассматривать не будем, имеет коэффициент мощности (cos f), чем он выше, тем меньше потери. Идеальная нагрузка – активная, с точки зрения минимальных потерь в проводах, например электронагреватель с ТЭНом, его коэффициент мощности равен 1.

Индуктивное и ёмкостное сопротивление по отдельности, это два вида реактивного сопротивления, но с противоположным сдвигом фаз, если они соединены параллельно,то при правильном расчёте номиналов компенсируют друг друга. Любое из двух видов реактивных сопротивлений вредно,так как вызывает ток в сетях. Работа не совершается, (cos f

Для примера можно подсчитать потери, которые должен учесть бытовой счётчик, если включена реактивная нагрузка. Считал всё в программе ElectroDroid.

Если включить реактивную нагрузку в сеть – конденсатор ёмкостью 5 мкф, такой как в приборе описанном выше, то в сети потечёт ток примерно 0.5 А.

Допустим для медной проводки длиной 10 м и сечением 2.5 мм кв, от счётчика до розетки где включено устройство, потери составят аж 0.07 В и 0.035 Ватт! При всех благоприятных условиях, выходит это максимум что сможет сэкономить подобное устройство, если компенсирует индуктивную нагрузку на 100%! Внушительные цифры :)

Это было давно, сейчас маркетологи вроде успокоились с этой штуковиной, а может люди поумнели, что не берут больше мифический прибор…

Прибор для экономии на основе тиристоров - минимизатор Тарасова

Подходим к основной теме статьи. Наткнулся я как то на изобретателя, который изобрёл прибор для ”экономии”.

В начале я решил, что устройство для экономии как то должно бороться с реактивным (вредным) сопротивлением, желательно чтобы это еще и происходило автоматически, для максимального эффекта. Теоретически убрав реактивную составляющую, прибор всё равно не сможет дать такую большую экономию как обещает автор изобретения, стал разбираться…

Всё серьёзно и должно внушать доверие, это вам не просто видео на Ютубе!

Схема, указанная в патенте, может работать как обычный диммер собранный на двух мощных тиристорах. Экономия должна происходить за счёт снижения напряжения в электросети непосредственно там, где будет включатся нагрузка. Эта идея мне кажется абсурдной, так как это попросту снизит мощность электроприборов, соответственно снизит их эффективность – нагреватели станут меньше греть, лампочки слабее светить и т.д.

Всё сложнее, истину не видно на первый взгляд. Автор предлагает в комплект купить неполярный конденсатор 100 мкф (а он стоит немало!), включить его после своего прибора (МИМ) и вот тут происходит настоящее чудо, а точнее магия!

Любой тиристор является наполовину управляемым полупроводниковым прибором, то-есть можно управлять его открыванием, подав на управляющий электрод импульс, причем происходит открывание тиристора моментально (лавинообразно) – это ключевой момент, так как тиристор создаёт импульсную помеху, а вот закрывается тиристор только когда ток через анод и катод тиристора станет меньше тока удержания, когда синусоида будет проходить через 0. Вот здесь в описании работы я нашёл ошибку.

Цитата описание работы из текста патента минимизатора мощности МИМ:

“Подбором сопротивления цепи управляющих электродов можно добиться такого момента, когда тиристор будет выключаться и вновь включаться на гребне полуволны чуть ближе или чуть далее или несколько раз за все время прохождения полуволны, а не только при полном прохождении полуволны через ноль. Так как мощность нагрузки определяется количеством энергии, в нее поступившей, от нуля, до вершины и чуть далее полуволны синусоиды, можем с уверенностью заявить, что убывающая энергия второй половины полуволны, той, что за вершиной, для работы не используется и теряется. Срезая, например, вершину полуволны синусоиды, МИМ позволяет отсекать частично, как фазовый регулятор, часть первой половины полуволны синусоиды и как МИМ, часть второй, убывающей полуволны синусоиды, экономя тем самым электроэнергию.”

Нельзя подбором сопротивления в цепи управляющего электрода добиться ВЫКЛЮЧЕНИЯ тиристора в принципе! Ошибка в описании работы совсем не влияет на работу прибора, ПРИБОР РАБОТАЕТ! Но именно как генератор мощных импульсных помех в электросети!

На самом деле происходит всё вот как: тиристор открывается (лавинообразно), происходит мгновенное подключение конденсатора внушительной ёмкости к сети, что вызывает большой скачок тока и просадку напряжения, форма синусоиды искажается. Разрядка конденсатора 100 мкф происходит через нагрузку. При следующей полуволне конденсатор снова заряжается, процесс повторяется. Автор попросту подобрал номиналы конденсатора и схемы так, чтобы схема генерировала помехи в сетевое напряжение, достаточные, чтобы несинусоидальность сетевого напряжения вносила погрешность в работу счётчика.

Появляется высокочастотная составляющая (большая скорость нарастания сигнала), простыми словами счётчик “не успевает” считать цикл заряда конденсатора. Гениально и просто, браво! Ничего общего с коррекцией реактивной мощности в работе прибора нет.

Мы нашли это объявление год назад
Нажмите Следить и система автоматически будет уведомлять Вас о новых предложениях со всех досок объявлений

Новая жалоба

Еще объявления

Похожие объявления

Пpоизводство – Южная Kорея. Назнaчениe – прибор для использoвaния в помещeнии пpoтив лeтaющих и ползающих нacекомыx. Работaeт oт электрoсeти. Мeры безoпacнocти – корпус пpeдотвpащaет случайноe каcаниe к pешeткe под элeктротоком. Принцип дeйствия – нaсекомые пoлучaют смертельный электроудар током, когда садятся на решетку, влекомые светом лампы-УФ. Мощность 40 Вт, можно подвешивать к потолку Площадь охвата эффективной работы оборудования – 120 кв.м.

Производство – Южная Корея. Назначение – прибор для использования в помещении против летающих и ползающих насекомых. Работает от электросети. Меры безопасности – корпус предотвращает случайное касание к решетке под электротоком. Принцип действия – насекомые получают смертельный электроудар током, когда садятся на решетку, влекомые светом лампы-УФ. Мощность 40 Вт, можно подвешивать к потолку Площадь охвата эффективной работы оборудования – 120 кв.м.

Пpoизводствo – Южнaя Kорея. Назнaчениe – прибoр для испoльзoвания в пoмещeнии пpoтив лeтaющих и ползающих нaсекомых. Paбoтaeт от элeктpосeти. Мeры бeзoпаснoсти – корпус прeдотвращает случaйнoе каcаниe к pешeтке под элeктрoтoкoм. Принцип дeйcтвия – насекoмыe получают смертельный электроудар током, когда садятся на решетку, влекомые светом лампы-УФ. Мощность 40 Вт, можно подвешивать к потолку Площадь охвата эффективной работы оборудования – 120 кв.м.

Всем привет. Учась в университете я собрал маленький электромобильчик, ну или карт. Его фишкой было то, что всё управление электроприводом, включая тормоза было отдано самодельному контроллеру. И именно о том, как я делал этот маленький автомобильчик, и с какими подводными камнями столкнулся при постройке — хотелось бы рассказать в данном материале. Материал не претендует на уникальность, но для меня это был большой и интересный опыт.

Основные узлы

Тяговый двигатель — коллекторный универсальный. Может работать как от постоянного, так и от переменного тока. Рабочее напряжение 220 вольт.

image

Аккумуляторная батарея — 25 свинцово-кислотных ячеек по 6 вольт фирмы Casil, соединённых последовательно, по итогу получаем батарею 150-160 вольт. Она установлена сзади и перемотана синей изолентой, всё как положено :)

image

Двигатель приводил колёса в движение через червячный редуктор с передаточным числом i=10. На фото видно, что двигатель сочленен с редуктором с помощью небольшого валика, он был выточен специально.

image

Системы торможения, то есть тормозного диска с суппортом не было в принципе. Поставить физический тормоз на тот момент не получалось. Поэтому торможение двигателем оставалось единственным реальным вариантом, так что управление торможением машины тоже пришлось брать на себя контроллеру.

Контроллер для блока управления

image

На тот момент я не очень шарил в электронике, и изначально хотел делать схему до безобразия тупой — двигатель включён или двигатель отключен, но вместо реле поставить транзисторный ключ, дабы ничего не щёлкало и не горело. Но решил, что риск оправдан, я ничего не терял да и просто хотелось сделать что-то стоящее. Так что остановился на связке микроконтроллер + силовой полевой транзистор в качестве ключа. Ручку газа и кнопку реверса вывел на руль.

Особенности схемы

При выборе транзистора я не скупился и выбрал IRFP4227PBF — N-канальный полевой транзистор (открывается положительным импульсом) на напряжение 200 вольт и максимальный ток 130 ампер. Корпус TO-247AC. Но, забегая вперед скажу — я смог сжечь и его.

image

PWM — что это такое и с чем её едят

Раз я использовал микроконтроллер в связке с полевым транзистором, то грех было не попробовать использование pwm/шим в схеме. Что такое шим? Широтно-импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью методом пульсирующего включения и выключения прибора. — спасибо Википедии.

Подводные камни в алгоритме работы

Выход из ситуации — вводим в программу условие, что перед переключением снимаем нагрузку выкручивая скважность PWM-сигнала на 0, перекидываем реле, и опять включаем мощность на заданный уровень. Именно так и работали тормоза на машине — реверсом. Только хардкор — никаких датчиков и энкодеров, ничего. А вот и фото релюшки, это вроде как реле стартера от жигулей. Если переключать их не под нагрузкой, то вполне работают и с высокими напряжениями, 160 вольт при 15 амперах держали, но допускаю, что контакты грелись ввиду малого сечения.

image

image

После я допилил прошивку и мощность поднималась плавно до заданного уровня. А это уже исключает удары в трансмиссии и нагрузку на узлы. Вот так одна строчка в программе может увеличить срок службы агрегата.

Соединяем контроллер с транзистором правильно

image

Несколько интересных моментов

В конце концов получилось то, что на видео

Вообще мои опыты с электроприводом начались ещё в школе и я испробовал много разных конструкций, но это самая удачная схема на тот момент. Если материал понравится, то напишу отдельный пост про всю эпопею.


Кузов

1

2

3

Двигатель

4

5

6

Трансмиссия

Третью передачу используем для езды по городу, четвертую – по загородной трассе, вторую – по буеракам. Первая вообще никогда не используется, момент на колесах такой, что их просто прокручивает при легком касании акселератора!

Плита легко делается своими руками из толстолистовой стали или алюминия – достаточно наличия слесарных навыков среднего уровня, болгарки и дрели.

7

9

10

Переходную втулку, соединяющую валы электромотора и КПП, также сделать несложно с помощью дяди Васи-токаря и сварки – с одной стороны втулка должна совмещаться с валом электродвигателя, а с другой к ней приваривается шлицевая часть, вырезанная из диска сцепления той коробки, с которой мы соединяем электромотор.

11

12

13

Батарея

В свое время через свинец многие проходили – и я в том числе. Сейчас такие ошибки повторять никакого смысла нет. Стартерные батареи у меня начали помирать через пару месяцев, еле успел распродать за полцены, пока не потеряли емкость. Потом одно время использовал герметичные батареи от питания телекоммуникационных систем (источники бесперебойного питания сотовых вышек) – хватало на сезон, начинало расти внутреннее сопротивление… Поэтому, как только появился широкодоступный литий-феррум, все перешли на него. Лучшая удельная плотность энергии, умение отдавать и принимать большие токи, долговечность, морозостойкость. Но цены пока высоки, и батарея является самым дорогим узлом электромобиля – это нужно учитывать самодельщику…

14

15

16

Считаем:

30 ампер-часов х $1,5 = $45 за одну банку $45 х 30 банок = $1350 $ за всю батарею

В общем, батарея небюджетна, и это лишь емкость, пригодная для первых экспериментов – по-хорошему, её нужно увеличивать хотя бы вдвое.

Прочие узлы

Собственно, помимо мотора, трансмиссии и батареи в простейшем электромобиле имеется еще ряд узлов – как необходимых, так и устанавливаемых по желанию. Категорически необходимым является, конечно же, контроллер управления двигателем. В простейшем варианте он может быть изготовлен самостоятельно на относительно недорогих и широко распространенных деталях, а датчиком педали газа послужит датчик угла поворота дроссельной заслонки от инжекторного ВАЗа. Можно купить контроллер у отечественных самодельщиков, выписать фабричный из Китая или заказать с eBay бэушный брендовый блок от Curtis – обойдется модуль в 250–300$.

Дополнительных узлов, которые не являются обязательными для пробной (а то и вообще!) поездки – немало. Например, печка, из которой выкидывается жидкостный радиатор и устанавливается вместо него электрический ТЭН. Или, скажем, вакуумный насос для усилителя тормозов. Поскольку двигатель внутреннего сгорания на машине отсутствует, исчезает и разрежение впускного коллектора, необходимое для работы вакуумного усилителя тормозов. Поэтому многие самодельщики ставят электрические вспомогательные насосы ВУТ, заимствованные от машин типа Volvo XC90, Ford Kuga и т. п.

Цены и деньги

Ну или, скажем, следующая планка — Hyundai Solaris. Новым он стоит от 600 000 рублей, что составляет около 9 200 $. Подобную же сумму придется затратить, если строить электромобиль на базе более-менее свежего кузова иномарки, который прилично выглядит снаружи и имеет не убитый салон, купив к этому кузову хороший американский электромотор, надежный фирменный контроллер Curtis и набрав емкую батарею. Однако на выходе – в общем-то, почти то же самое, что и в первом случае… У Соляриса в козырях максимальная скорость и динамика, возможность пополнять запас топлива повсеместно, а не только в личном гараже, где есть розетка, все преимущества новой и надежной машины с массой функциональных удобств, гарантии и прочее. Самоделка же, пусть и более приличная внутри и снаружи, остается самоделкой – машиной с существенными ограничениями по дальности пробега и возможности заправки, вечным конструктором, тренажером для рук и ума.

Выводы

С точки зрения приложения рук и ума для человека, любящего автомобили и технологии, постройка электромашины, безусловно, оправдана! Хобби это, конечно, затратное, но все познается в сравнении — причем, в сравнении не с олигархическими крайностями вроде коллекционирования яичек Фаберже, а со вполне распространенными и массовыми техническими прикладными увлечениями. Скажем, любителю рыбалки средненькая надувная лодчонка с подвесным двигателем известной марки сил эдак в десять выльется как минимум в две трети простейшего электромобиля.

Хороший квадрокоптер с камерой стоит не меньше. На этом фоне постройка электромобиля ничуть не выделяется – нормальная такая мужская забава…

Однако, пока не подешевели эффективные батареи и не распространились недорогие комплекты тяговых моторов и контроллеров, как это произошло с китами для электровелосипедов, электромобиль гаражной постройки в отношении стоимости эксплуатации вряд ли будет серьезным конкурентом бюджетным бензиновым авто и тем более – газифицированным машинам… В случае стремления к экономии вложиться в установку пропанового газового оборудования – проще и выгоднее…

Фото любезно предоставил американский самодельщик Брюс, тщательно документировавший все этапы постройки в домашних условиях своего электромобиля на базе пикапа-хэтчбека Suzuki Mighty Boy 1985 года.

Читайте также: