Пассивный блок питания для компьютера своими руками
В данной статье использовались только факты, проверенные и испытанные временем. Автор статьи не ставит своей целью убеждать читателя в чём-либо. И уж тем более не несёт никакой ответственности за ваши эксперименты с вашим же оборудованием. Информация справедлива для блоков питания стоимостью много меньше 40$.
В общем-то всё в пределах нормы. =
Заметны короткие выбросы напряжения. С увеличением нагрузки – увеличиваются выбросы. Следствие – глюки памяти и других цифровых элементов PC. Отметим, что нагрузка 30% - это большинство PC не обременённых более чем одним HDD. Имеющим простенькую видеокарту и CPU потребляющий не более 15W.
В теории сказано, что ИБП очень критичны к нестабильности тока нагрузки. В нашем случае этот недостаток проявляется во всей красе. Так выглядит осциллограмма напряжения +12В при динамической нагрузке.
На Рис.2 участок №1 – статическая нагрузка. Участок №2 – HDD в режиме чтение/запись. Характерны провалы напряжения питания +12В. Величина и длительность провала зависит от параметров фильтра блока питания и мощности HDD. Следствие: из-за нестабильности шины питания +12В жесткий диск начинает хлопать головами по "блинам". Появляются бэды. Глюки утройств питающихся от шины +12В (ISA карты, COM порты)
В большинстве АТ блоках фильтр для шины питания +5В состоит из двух электролитических конденсаторов 1000мкФх10В. Для шины питания +12В одного конденсатора 1000мкФх16В. Для импульсных блоков питания емкость фильтрующих конденсаторов берётся из расчета 500..1000мкФ на 1А тока нагрузки. В нашем случае получаем для шины +5В максимальный ток нагрузки составит 4А. Для шины питания +12В максимальный ток нагрузки составит 2А.
В большинстве случаев аварийная ситуация не возникает. Но вот при использовании даже одного HDD типа IBM DPTA 7200RPM (или с аналогичным энергопотреблением) наблюдались вышеуказанные глюки.
Для этой схемы (Рис.4) справедливы следующие параметры: шина +5В – максимальный динамический ток нагрузки 20А.
Шина +12В – максимальный динамический ток нагрузки 8А.
Электролитические конденсаторы устраняют нестабильность по току. Керамические (2.2мкФ 3..6шт.) устраняют импульсные выбросы напряжения. Рекомендуется серия с низким сопротивлением для импульсных токов (кажись так называется). Каждая фирма маркирует их посвоему. Из того, что можно достать в Питере - например Hitano, серия EXR, рабочая температура до 105 цельсия. Для +5В - две штучки 2200мкФ или 3300мкФ 6,3 или 10В (нужно смотреть габариты, производители БП очень сильно ужимают место). С керамикой ничего посоветовать не могу. Из того что видел отличаются только ТКЕ и точностью ( например +80 -50% ). Думаю в фильтрах такого рода это не принципиально. Тут чем больше емкость, тем лучше. Наверное лучше брать SMD (бескорпусную) и паять с обратной стороны платы прямо на проводники. По поводу катушек в выходных фильтрах: если нет опыта намотки - лучше не эксперементировать. Если есть возможность купить, то можно попробовать. Или выпаять из мертвого БП. С катушками на выходе - нужно быть очень осторожным. Блок проверять только нагружая на резисторы.
Так выглядит под нагрузкой "поверхность" напряжения брендового блока питания. Присутствуют выбросы напряжения, но они незначительны (много меньше допустимой нормы) и с увеличением нагрузки практически не увеличиваются. Суммарная емкость (мой вариант) электролитических конденсаторов 6800мкФ. Керамических конденсаторов 1.5мкФ (всё что было под рукой). Для интереса был протестирован блок питания АТХ фирмы PowerMan из корпуса InWin A500 – осциллограмма похожая, но выбросы напряжения отсутствуют.
На Рис.6 участок 2 соответствует динамической нагрузке.
Емкость фильтра – один конденсатор 4700мкФх25В (HDD в режиме чтение/запись). Максимальная помеха не более 100мВ. Блок питания АТХ фирмы PowerMan показал примерно тотже результат.
Кто-то скажет: "ну а нам всё равно - гадит наш РС в сеть или нет. Ну сэкономили на сетевом фильтре, ну и что." Возможно вас убедит следующая осциллограмма.
На Р и с.9 участок №1 – работа мощного перфоратора. Участок №2 – включение мощного индуктивного потребителя (например холодильник или пылесос). Вклю чение индуктивной нагрузки всегда сопровождается мощным всплеском напряжения. Напряжение импульсной помехи рассчитывается по следующей формуле:
Где: - сопротивление контактов в момент размыкания. - сопротивление контура цепи 220В. - напряжение сети (220В).
Нетрудно догадаться, что числитель всегда больше чем знаменатель. На осциллограмме (Рис.9) участок 2 - присутствует "провал" сетевого напряжения длительностью 20..500мсек (характерно для включения в сеть потребителей с реактивным характером сопротивления). От коротких провалов напряжения спасает UPS (минимальное время включения бесперебойника 4мсек). Это хорошо если он есть. Возможно понадобится увеличить емкость высоковольтного фильтра постоянного тока (на Рис.10 – электролиты 680х250V). Обычно установлены 220х200V. При потребляемой мощности 100Ватт запаса емкости (220х200V) хватает на 70..100мсек. Если увеличивать емкость до 680..1000мкФх200В, то не забудьте заменить диодную сборку RS205 (2A 500V) на RS507 (5A 700V). Обязательно наличае терморезистора 4,7 . 10 Ом на 10А. На терморезисторах обычно экономят. Ставят обычное сопротивление 1 Ом, 1Ватт
Из всех элементов в схеме фильтра обычного БП присутствует только терморезистор PS405L и предохранитель (самое необходимое). Иногда ставят симметричный трансформатор (на схеме – 5mH). Само собой - выпрямитель RS205 и высоковольтный фильтр постоянного тока (2 электролита 220х200В).
5. Увеличение КПД
5.1 Замена мощных ключевых транзисторов
Менять будем импортные биполярные KSE13007 (или NT405F, 2SC3306) на наш советский полевик КП948А.
Такой вариант годится для АТХ блоков питания, т.к. запуск блока происходит от от дельного маломощного источника питания. Для АТ блоков такая схема не годится. Поэтому я оставил обвязку транзистора как есть, добавив 15В стабилитрон (как показано на схеме Рис.11). Стабилитроны ставить необзятельно, т.к. прямое напряжение на затворе не превышает 1В (прямой диод), а напряжение его обратного пробоя не более 10В, Конденсаторы 1мкФх50v (Рис.12) стоит ставить керамические (если ставится задача повышения надёжности), высыхание этих электролитов (особенно рядом с горячим радиатором) является основной причиной выхода блока питания из строя, так как недостаточно резко запираются силовые транзисторы.
Не знаю почему – но у меня работает. Падение мощности на транзисторах уменьшается на 3..5Ватт. Хотя стабилитроны я всётаки оставил. Как следствие – перестает греться.
Мощные выпрямительные диоды ставим на нормальные радиаторы. Подойдёт радиатор от CPU - пилим пополам. Одна половинка на +5В выпрямитель. Вторая - для +12В выпрямителя. Рекомендуют также силовые диодные сборки заменить на наши советские диоды КД2998А. Радиаторы - увеличить. Всё! Теперь вентилятор из БП можно выкинуть. При этом нарушается нормальный теплообмен внутри корпуса. Но если это БП для маршрутизатора – то греться внутри корпуса особо нечему. Если это файловый сервер – тогда на свой страх и риск. Хотя Manowar Manowar'ыч утверждает, что у него переделанный АТХ блок питания нагружен на 2HDD 7200RPM + УНЧ и всё это хозяйство работает без вентилятора.
В общем – успехов вам!
Достать бывший в употреблении блок питания компьютера сегодня несложно, а стоит он сущие копейки. Но как его можно использовать без самого компьютера? В этой статье мы это выясним, а заодно сделаем своими руками зарядное устройство и лабораторный блок питания (ЛБП) из компьютерного блока питания.
Как включить блок питания (БП) от компьютера без компьютера
Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.
На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.
Важно. В большинстве блоков питания ATX предусмотрен дополнительный служебный механический выключатель, расположенный на задней стенке ПК. Напряжение сети на БП этих моделей подается после включения этого тумблера.
Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on , и БП, а значит, и сам компьютер включаются.
Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.
Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой
Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.
Табличка особых пояснений не требует. С зеленым проводом ( Power on ) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.
Фиолетовый провод ( +5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу ( Power good ) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.
Переделка БП ATX в регулируемый или лабораторный блок питания
А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ-контроллер которого собран на специализированной микросхеме TL494 (она же: mА494, mPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).
Сразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.
Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.
Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.
Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.
Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.
Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.
Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.
Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.
Первое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.
Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.
Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.
Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.
Как сделать зарядное устройство
Теперь займемся переделкой компьютерного блока питания в автомобильное зарядное устройство.
Прибор для зарядки постоянным напряжением
Это устройство заряжает аккумулятор постоянным фиксированным напряжением 14 В. По мере зарядки батареи зарядный ток будет падать. Как только напряжение на клеммах батареи достигнет 14 В, ток станет равным нулю, а зарядка прекратится.
Благодаря такому алгоритму аккумуляторную батарею невозможно перезарядить, даже если оставить ее на зарядке на неделю. Это полезно при обслуживании AGM и GEL автомобильных аккумуляторов, которые очень не любят перезарядки.
А теперь за дело, тем более, что схема доработки простая. Дорабатывать будем БП ATX на контроллере TL494 или его аналогах (см. раздел выше). Наша задача – повысить выходное напряжение по шине +12 В до 14 вольт. Сделать это несложно. Вскрываем блок питания, вынимаем плату и отпаиваем все провода питания, оставив лишь желтый, черный и зеленый.
Впаиваем зеленый провод на место любого черного – подаем команду БП на безусловное включение при подключении к сети (см. раздел выше). Выпаиваем электролитические сглаживающие конденсаторы со всех линий питания. На место, где стоял конденсатор по шине +12 В устанавливаем конденсатор той же емкости, но на рабочее напряжение 35 В. Переходим к доработке контроллера. Находим резистор, который соединяет первый вывод микросхемы с шиной +12 В. На схеме ниже он обозначен стрелкой.
Нам нужно сменить его номинал. Но на какой? Выпаиваем, измеряем его сопротивление. В нашем случае его номинал – 27 кОм, но в зависимости от модели БП значение может меняться. На место выпаянного устанавливаем переменный резистор номиналом примерно вдвое большим. Движок резистора устанавливаем в среднее положение.
Включаем блок питания и, измеряя напряжение на шине +12 В (желтый провод относительно черного), вращаем ползунок. Напряжение легко уменьшается, но увеличить его не получается – мешает защита от перенапряжения. Для того чтобы поднять напряжение до необходимых нам 14 В, ее нужно отключить. Находим на схеме резистор и диод, обозначенные на рисунке ниже стрелками, и выпаиваем их.
Снова включаем БП, выставляем напряжение между черным и желтым проводами величиной 14 В. Выключаем, выпаиваем резистор, не трогая его движок, измеряем сопротивление. На место переменного устанавливаем постоянный того же номинала. Устанавливаем на корпус две клеммы, подпаиваем к ним черный и желтый провода, помечаем, где плюс и минус (желтый – плюс, черный – минус).
Снова включаем БП, теперь уже переделанное в зарядку для аккумуляторов устройство. К клеммам подключаем нагрузку – лампу дальнего света автомобиля. Измеряем на клеммах напряжение: если оно не снизилось более чем на 0.2 В, то доработка окончена. Собираем прибор и пользуемся.
Важно! Конечным напряжением зарядки AGM и GEL аккумуляторов является значение 13.8 В, поэтому выходное напряжение имеет смысл снизить с 14 В до 13.8 В.
Единственный, пожалуй, недостаток этой самодельной конструкции – она не имеет защиты от короткого замыкания и переполюсовки (мы ее отключили). Поэтому пользоваться прибором нужно внимательно.
Зарядник с регулировкой тока и напряжения
Теперь попробуем переделать компьютерный БП так, чтобы можно было плавно регулировать напряжение и ток зарядки. Это позволит обслуживать батареи любой емкости и на любое напряжение. Кроме того, это зарядное устройство имеет защиту от короткого замыкания, перегрузки и перегрева. С его помощью можно изменять зарядное напряжение от 0 до 25 В и ток от 0 до 8 А.
Теперь надо поднять напряжение на шине +12 В до величины 28 В. Для этого удаляем резисторы, соединяющие первый вывод ШИМ контроллера с шинами +5 и +12 В. На схеме ниже они обозначены стрелками.
Включаем блок питания и измеряем напряжение между желтым и черным проводами – оно должно увеличиться до указанных значений. С блоком питания все. Теперь перейдем к сборке узла регулировки напряжения и тока, представленного на схеме ниже.
На транзисторах VT1 и VT2 собран простейший узел регулировки напряжения. Сама регулировка осуществляется при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения/тока. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулировка тока производится потенциометром R17. Резисторы R7 и R8 – токовыравнивающие. Далее напряжение через амперметр PA1 подается на клеммы, к которым подключается заряжаемая батарея. Напряжение на батарее контролируется при помощи вольтметра PV1.
Вольтметр и амперметр можно использовать любые – хоть цифровые, хоть стрелочные. Первый должен иметь предел измерения 30 В, второй – 10 А. В качестве токовыравнивающих резисторов используются отрезки монтажного провода длиной 20 см и сечением 1 мм. кв. Если блок выполнен навесным монтажом, то в их качестве будут выступать монтажные провода.
Мощный полевой транзистор, который можно взять из неисправного компьютерного БП, и микросхемы стабилизатора устанавливаются на общий радиатор через слюдяные прокладки. Очень удобно использовать для этих целей радиатор от процессора ПК. Ниже представлен один из возможных вариантов монтажа блока регулировок.
Если все готово, то включаем зарядное устройство, нагружаем его лампой дальнего света и проверяем работу, регулируя выходные ток и напряжение и контролируя их по приборам.
Что касается защиты, то она уже встроена в микросхемы DA2 и DA4. Эти приборы имеют внутреннюю защиту от перегрузки, короткого замыкания и перегрева.
Вот мы и разобрались с тонкостями доработки компьютерных блоков питания. Теперь нам не составит труда переделать их в зарядное устройство для автомобильного аккумулятора или лабораторный блок питания.
Приветствую на канале. Сегодня я покажу как сделать компьютерный блок питания более стабильным. Не многие знают, что под нагрузкой у компьютерных блоков питания просаживается напряжение. Это происходит как на линии 5 вольт, так и на линии 12 вольт. Причина тому, общая обратная связь по обеим линиям.
Буду показывать на примере такого блока питания. На глаз ватт 300.
Важно. Включать блок в сеть, после каких либо изменений в схеме, рекомендую через лампочку 220 вольт 40-60 Ватт.
Включаем блок питания без нагрузки, к выходу подключаем провода мультиметра, и видим напряжение 12,48 вольт.
Да, чтобы блок запустился нужно контакт PS-ON, он же зеленый провод на разъёме, подключить к минусу.
При подключении лампочки накаливания 12 вольт и всего 5 ватт, напряжение просело до 11,98 вольт. Просадка составила 0,5 вольта.
С линией 5 вольт, та же история.
Напряжение просело на 0,02 вольта. Но это только при небольшой нагрузке. С мощной нагрузкой, все будет куда более существенно.
Если посмотреть на упрощённую схему выходной части компьютерного блока питания, то можно заметить, что обратная связь подключена как к 5-ти вольтовой линии, так и к 12-ти. На схеме это резисторы R1 и R2. Мой блок устроен на ШИМ контроллере TL494, поэтому вход обратной связи, это первая нога, у других микросхем, естественно будут другие ноги.
Что происходит при работе? Когда появляется нагрузка, например на линии 12 вольт, блок пытается стабилизировать, то есть приподнять напряжение, в месте с этим поднимает напряжение на 5-ти вольтовой линии. (Трансформатор ведь общий). Но к ней тоже подключена обратная связь, микросхема видит, что напряжение 5 вольт растет, понимая это, пытается его снизить. Тем самым затрагивая напряжение на 12-ти вольтовой линии. В итоге обратная связь по 5-ти вольтовой линии мешает корректно стабилизировать напряжение на 12-ти вольтовой линии. Все тоже самое происходит, если нагружать 5-ти вольтовую линию.
Что делать? Все просто, убираем резистор обратной связи. Нужны 12 вольт, значит убираем резистор с 5-ти вольт. Нужны 5 вольт убираем резистор с 12-ти вольт.
При удалении резистора обратной связи напряжение немного подрастет, например на линии 12 вольт может подняться более 13 вольт, его можно подстроить подбором резистора обратной связи по 12 ти вольтам. На схеме это R2.
Если нужен регулируемый блок питания, то вместо резистора обратной связи, устанавливаем переменный резистор. Чем меньше сопротивление, тем меньше напряжение и наоборот. Более 22 -23 вольт на 12-ти вольтовой линии, поднимать напряжение не рекомендую. И да, если поднимаете напряжение более 14-15 вольт не забудьте заменить выходные электролитические конденсаторы на напряжение 25-35 вольт. Рекомендую 35 вольт.
Если произойдет обрыв переменного резистора, то на выходе напряжение взлетит на максимум. Это чревато выходом из строя нагрузки. Поэтому рекомендую поставить переменный резистор вместо R3. Зависимость будет обратная, чем ниже сопротивление тем выше напряжение и наоборот. Еще в таком случае рекомендую увеличить сопротивления, как R1 так и R3, так как суммарное низкое сопротивление приведет к повышенному току на делителе и он будет греться, что приведет к изменению сопротивления, а соответственно напряжения, ну и в итоге к вероятному сгоранию резисторов делителя.
Если сильно изменить напряжение, от номинальных, то супервизор может вырубит TL494. Что бы этого избежать нужно от 4 ноги TL494 отпаять диод, через который супервизор управляет выключением блока. В данном блоке, супервизор сделан на компараторе LM339N.
В итоге получаем адекватный с нормальной стабилизацией блок питания. Сейчас конечно, все больше блоков с DC-DC преобразователями. С ними такой проблемы нет. В них каждое напряжение стабилизируется независимо. Ну, а если нужен просто нормальный блок питания , то можно купить на всем известном сайте .
В видео ниже, можно наглядно посмотреть просадку напряжения, и какой эффект достигается при удалении резистора ОС.
На этом думаю всё. Не забываем подписываться, ставить лайки, писать комментарии. Ну, и по желанию поддержать канал.
Как сделать бесперебойник своими руками?
Обеспечить бесперебойное питание приборов в течение достаточно длительного времени могут только устройства на основе мощных и емких аккумуляторов, для которых надо использовать зарядное устройство соответствующей мощности и инвертор, преобразующий постоянное напряжение в стандартные 220 В. Наибольшую сложность будет представлять именно изготовление инвертора, поскольку от того, какой он выдает синус — чистый или меандр разных типов — зависит, какие приборы смогут быть запитаны от полученного комплекта. Некоторые устройства не воспринимают импульсное напряжение с большим числом высокочастотных гармоник — это надо учитывать, планируя создание ИБП.
Большинство пользователей предпочитают использовать готовый инвертор заводской сборки, поскольку обеспечить необходимую частоту для дома и всех потребителей достаточно сложно.
Что потребуется?
Из всех этих компонентов однозначно купленными будут аккумуляторы, и, поскольку на них все равно придется тратиться, то лучше купить новые, а не бывшие в употреблении. Зарядное устройство можно собрать самостоятельно, как и инвертор, хотя специалисты утверждают, что результат в любом случае будет уступать заводским образцам из-за низкого качества деталей и комплектующих.
Если принимается решение собирать оба узла самостоятельно, то следует использовать новые, качественные детали.
Правила безопасности и важные советы
Прежде всего, следует соблюдать правила безопасности при работе с электроприборами и с установками под напряжением. Если производится сборка всего ИБП или отдельных узлов своими руками, к перечню обычных требований прибавляются правила безопасности при работе с нагревательными приборами. Работа с паяльником требует осторожности, оптимальный вариант — использование паяльной станции с вытяжкой и специальной безопасной подставкой.
Важный момент — использование достаточно толстого соединительного провода. Если его сечение не будет соответствовать установленным нормам, провод будет сильно греться и может расплавиться, что вызовет прекращение работы комплекта и создаст угрозу возгорания.
Пошаговый алгоритм действий
Для того чтобы изготовить бесперебойник своими руками, надо выполнить определенную последовательность действий. Прежде всего, надо определиться с тем, какие узлы будут созданы самостоятельно, а какие лучше приобрести в готовом виде. Затем нужно обзавестись необходимыми узлами, элементами и деталями комплекта, приобрести аккумуляторы. Начинать сборку без них не рекомендуется, так как зарядное устройство должно в точности соответствовать характеристикам АКБ.
Схемы и пояснения
Рассмотрим структурную схему ИБП.
Здесь инвертор и фильтр высших гармоник представлены как два разных блока, хотя на практике нередко они объединены в один узел.
Сначала преобразователь (другое название инвертора) получает с аккумуляторов постоянное напряжение 12 В, превращая его в импульсное переменное напряжение (меандр) 310 В. Затем при помощи фильтра высших гармоник срезаются излишки, доводя форму сигнала до синусоиды с амплитудой 220 В. На схеме отмечен важный момент — напряжение зарядного устройства для данных АКБ должно составлять 28,8 В. Эта величина позволяет обеспечить полноценную зарядку аккумуляторов без риска перезаряда, выкипания или выхода АКБ из строя.
Бесперебойное питание обеспечивается переключением с сетевого источника на ИБП, производящимся при изменениях сетевого напряжения — его падении или полном исчезновении. Некоторые приборы отсекают и скачки напряжения, переводя питание потребителей на ИБП до тех пор, пока сетевое напряжение не придет в норму.
Для переключения питания используется реле, на которое постоянно подается напряжение из сети.
При его значительном падении или отключении контакты реле переключают питание на ИБП, а при появлении напряжения — вновь замыкаются и включают подачу тока из сети.
Полезное видео на эту тему
Возможные проблемы и нюансы
Работа блока питания сопровождается сильным нагревом деталей и требует качественного охлаждения. Для этого обычно используется вентилятор соответствующего размера (иногда подходит компьютерный кулер, реже приходится устанавливать более крупные образцы). Распространенной ошибкой является присоединение питания вентиляторов к аккумуляторам (выходным клеммам). При переходе комплекта на автономный режим вентиляторы продолжают работать, способствуя разрядке АКБ, хотя в этом режиме они не нужны. За состоянием вентиляторов необходимо постоянно следить, они являются наиболее слабым звеном всей системы и часто выходят из строя, оставляя блок питания без охлаждения, чего допускать нельзя.
Необходимо следить за правильным соединением аккумуляторов. Последовательное соединение обеспечивает равномерную нагрузку и одинаковый расход заряда, тогда как при параллельном работает только один аккумулятор, что способствует его скорейшему выходу из строя.
Источник бесперебойного питания, созданный своими руками, проще поддается ремонту или модернизации.
Кроме того, подобный комплект можно использовать в связке с солнечными батареями или ветрогенератором, что существенно расширяет возможности ИБП и выводит его на автономный уровень функционирования.
Читайте также: