Двигатель постоянного тока 12 вольт своими руками

Обновлено: 06.07.2024

В статье дается краткий обзор и анализ популярных схем, предназначенных для управления коллекторными двигателями постоянного тока, а также предлагаются оригинальные и малоизвестные схемотехнические решения

Электродвигатели являются, наверное, одним из самых массовых изделий электротехники. Как говорит нам всезнающая Википедия, электрический двигатель – электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую. Началом его истории можно считать открытие, которое сделал Майкл Фарадей в далеком 1821 году, установив возможность вращения проводника в магнитном поле. Но первый более-менее практический электродвигатель с вращающимся ротором ждал своего изобретения до 1834 года. Его во время работы в Кёнигсберге изобрел Мориц Герман фон Якоби, более известный у нас как Борис Семенович. Электродвигатели характеризуют два основных параметра – это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках. В настоящее время имеется достаточно много разновидностей электродвигателей, и поскольку, как заметил наш известный литературный персонаж Козьма Прутков, нельзя объять необъятное, остановимся на рассмотрении особенностей управления двигателями постоянного тока (далее электродвигателями).

Коллекторные двигатели (Рисунок 1) более дешевы и, как правило, не требуют сложных систем управления. Для их функционирования достаточно подачи напряжения питания (выпрямленного, постоянного!). Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя или в специальном режиме управления моментом вращения. Основных недостатков таких двигателей три – это малый момент на низких скоростях вращения (поэтому часто требуется редуктор, а это отражается на стоимости конструкции в целом), генерация высокого уровня электромагнитных и радиопомех (из-за скользящего контакта в коллекторе) и низкая надежность (точнее малый ресурс; причина в том же коллекторе). При использовании коллекторных двигателей необходимо учитывать, что ток потребления и скорость вращения их ротора зависят от нагрузки на валу. Коллекторные двигатели более универсальны и имеют более широкое распространение, особенно в недорогих устройствах, где определяющим фактором является цена.

Поскольку скорость вращения ротора коллекторного двигателя зависит, в первую очередь, от подаваемого на двигатель напряжения, то естественным является использование для его управления схем, имеющих возможность установки или регулировки выходного напряжения. Такими решениями, которые можно найти в Интернете, являются схемы на основе регулируемых стабилизаторов напряжения и, поскольку век дискретных стабилизаторов давно прошел, для этого целесообразно использовать недорогие интегральные компенсационные стабилизаторы, например, LM317 [2]. Возможные варианты такой схемы представлены на Рисунке 2.

Схема примитивная, но кажется очень удачной и, главное, недорогой. Посмотрим на нее с точки зрения инженера. Во-первых, можно ли ограничить момент вращения или ток двигателя? Это решается установкой дополнительного резистора. На Рисунке 2 он обозначен как RLIM. Его расчет имеется в спецификации, но он ухудшает характеристику схемы как стабилизатора напряжения (об этом будет ниже). Во-вторых, какой из вариантов управления скоростью лучше? Вариант на Рисунке 2а дает удобную линейную характеристику регулирования, поэтому он и более популярен. Вариант на Рисунке 2б имеет нелинейную характеристику. Но в первом случае при нарушении контакта в переменном резисторе мы получаем максимальную скорость, а во втором – минимальную. Что выбрать – зависит от конкретного применения. Теперь рассмотрим один пример для двигателя с типовыми параметрами: рабочее напряжение 12 В; максимальный рабочий ток 1 А. ИМС LM317, в зависимости от суффиксов, имеет максимальный выходной ток от 0.5 А до 1.5 А (см. спецификацию [2]; имеются аналогичные ИМС и с б?льшим током) и развитую защиту (от перегрузки и перегрева). С этой точки зрения для нашей задачи она подходит идеально. Проблемы скрываются, как всегда, в мелочах. Если двигатель будет выведен на максимальную мощность, что для нашего применения весьма реально, то на ИМС, даже при минимально допустимой разнице между входным напряжением VIN и выходным VOUT, равной 3 В, будет рассеиваться мощность не менее

Таким образом, нужен радиатор. Опять вопрос – на какую рассеиваемую мощность? На 3 Вт? А вот и нет. Если не полениться и рассчитать график нагрузки ИМС в зависимости от выходного напряжения (это легко выполнить в Excel), то мы получаем, что при наших условиях максимальная мощность на ИМС будет рассеиваться не при максимальном выходном напряжении регулятора, а при выходном напряжении равном 7.5 В (см. Рисунок 3), и она составит почти 5.0 Вт!

Рисунок 3. График зависимости мощности, рассеиваемой на ИМС регулятора, от выходного напряжения.

Как видим, получается что-то уже не дешевое, но очень громоздкое. Так что такой подход годится только для маломощных двигателей с рабочим током не более 0.25 А. В этом случае мощность на регулирующей ИМС будет на уровне 1.2 Вт, что уже будет приемлемо.

На первом операционном усилителе собран генератор, на втором компаратор. На вход компаратора подается сигнал с конденсатора C1, а путем регулирования порога срабатывания формируется уже сигнал прямоугольной формы с нужным отношением t/T (Рисунок 5).

Управление двигателями постоянного тока
Рисунок 5. Диаграмма управления коллекторным двигателем на основе ШИМ. Верхняя трасса – напряжение на конденсаторе С1; средняя (пересекает верхнюю) – сигнал управления (напряжение на движке резистора RV2); нижняя – напряжение на двигателе.

Диапазон регулировки устанавливается подстроечными резисторами RV1 (быстрее) и RV3 (медленнее), а сама регулировка скорости осуществляется резистором RV2 (скорость). Обращаю внимание читателей, что в Интернете на русскоязычных форумах гуляет похожая схема с ошибками в номиналах делителя, задающего порог компаратора. Управление непосредственно двигателем осуществляется через ключ на мощном полевом транзисторе типа BUZ11 [4]. Особенности этого транзистора типа MOSFET – большой рабочий ток (30 А постоянного, и до 120 А импульсного), сверхмалое сопротивление открытого канала (40 мОм) и, следовательно, минимальная мощность потерь в открытом состоянии.

На что нужно в первую очередь обращать внимание при использовании таких схем? Во-первых, это исполнение цепи управления. Здесь в схеме (Рисунок 4) есть небольшая недоработка. Если со временем возникнут проблемы с подвижным контактом переменного резистора, мы получим полный почти мгновенный разгон двигателя. Это может вывести из строя наше устройство. Какое противоядие? Установить добавочный достаточно высокоомный резистор, например, 300 кОм с вывода 5 ИМС на общий провод. В этом случае при отказе регулятора двигатель будет остановлен.

Еще одна проблема таких регуляторов – это выходной каскад или драйвер двигателя. В подобных схемах он может быть выполнен как на полевых транзисторах, так и на биполярных; последние несравненно дешевле. Но и в первом и во втором варианте необходимо учитывать некоторые важные моменты. Для управления полевым транзистором типа MOSFET нужно обеспечить заряд и разряд его входной емкости, а она может составлять тысячи пикофарад. Если не использовать последовательный с затвором резистор (R6 на Рисунке 4) или его номинал будет слишком мал, то на относительно высоких частотах управления операционный усилитель может выйти из строя. Если же использовать R6 большого номинала, то транзистор будет дольше находиться в активной зоне своей передаточной характеристики и, следовательно, имеем рост потерь и нагрев ключа.

Еще одно замечание к схеме на Рисунке 4. Использование дополнительного диода D2 лишено смысла, так как в структуре транзистора BUZ11 уже имеется свой внутренний защитный быстродействующий диод с лучшими характеристиками, чем предлагаемый. Диод D1 также явно лишний, транзистор BUZ11 допускает подачу напряжения затвор-исток ± 20 В, да и переполюсовка в цепи управления при однополярном питании, как и напряжение выше 12 В, невозможны.

При эксплуатации многих электроинструментов, а также бытовых приборов используют коллекторные электродвигатели. Хотя для их питания подходит и постоянное, и переменное напряжение, иногда встает вопрос о регулировании частоты вращения без потерь общей мощности, ведь в инструментах эконом-класса могут отсутствовать встроенные регуляторы.



Содержимое статьи

Основные функции регулятора оборота

  • возможность ступенчатого разгона и снижения оборотов электродвигателя, что ведет к уменьшению нагрузок и меньшему потреблению электрической энергии;
  • можно осуществить плавный запуск, а при мгновенном максимальном разгоне мотор получает сверхвысокие нагрузки, перегрев обмотки и иных приводов;
  • как средство дополнительной защиты электронных механизмов;
  • сокращение расходов на техобслуживание силовых агрегатов и насосов, так как снижаются риски поломок привода, а также отдельных механизмов.


Без похожих встроенных устройств не обходятся сварочные аппараты, стабилизаторы напряжения, ПК, телевизоры и т.д.














Принцип работы контроллера


Такие самодельные электронные регуляторы оборотов 220В, сделанные своими руками, долговечны, надежны, компактны по своим габаритам, бесшумны, и в то же время дают возможность тонко настроить работу всего привода.


Основные детали для сборки

  1. Достаточный набор проводков.
  2. Схема (берется из технической литературы либо из интернета).
  3. Паяльник для работы.
  4. Конденсаторы, тиристор, резисторы и др.


К вниманию! Качественная регулировка достигается включением в схемы переменных резисторов, обеспечивающих плавное (либо ступенчатое) изменение количества оборотов.











Технические характеристики контроллера

  • поддерживаемый диапазон напряжений = 110 - 240 Вольт;
  • возможны нагрузки в 2,5 кВт;
  • использование рабочей мощности в пределах 300 Вт;
  • возможно регулировать обороты в диапазоне от 9 до 99%.


Если после ознакомления со всей информацией появляется вопрос, как сделать регулятор оборотов вашего двигателя, схемы и подсказки специалистов наверняка помогут разобраться в этом не хитром, по сути, деле. Да и способов существует несколько: навесной монтаж, на поверхности печатной либо монтажной платы.


Различные детские игры, робототехника, приусадебная автоматика используют двигатели с малой мощностью, которые работают от источников питания в 12 Вольт. Регулировку скорости вращения в таких устройствах можно сделать, подсоединив последовательно в цепь резистор. Но при этом достигается низкий КПД, и нет возможности плавно менять скорость вращения. Иногда, при низком напряжении, может произойти полная остановка двигателя.








А сделанный своими руками регулятор оборотов на 12В будет полностью соответствовать необходимым характеристикам, хотя включает в себя минимум элементов: транзистор, операционный усилитель, таймер и микросхему.


Если намечается использовать более сильные нагрузки, можно взять более мощный полевой транзистор или собрать более сложные системы, имеющие повышенную точность регулировки (с таймером).


Различные варианты схем позволяют создавать не только одноканальные, но и двухканальные регуляторы.


Основные советы мастерам

  • одним из важнейших критериев при выборе является мощность, которая должна превышать либо соответствовать данным на используемом приборе или агрегате;
  • для коллекторных двигателей чаще выбирают векторные регуляторы, но скалярные более надежны;
  • напряжение должно соответствовать допустимому диапазону;
  • проводки выбираются не слишком длинные;
  • надежное запаивание мест соединения и хорошая изоляция;
  • так как основным предназначением устройства является преобразование частоты, данный аспект выбирается в соответствии с теми или иными техническими требованиями.










Получается, что при старании можно и снизить уровень шума вентилятора у ПК, уменьшив напряжение и число оборотов при помощи транзистора и двух резисторов.


Такая работа по сборке простого контроллера полезна для получения дополнительных полезных навыков, к тому же, поможет сэкономить деньги.

Устройства бытовые и промышленные нуждаются в источнике электрической энергии. Наиболее перспективным в настоящее время признан генератор асинхронного типа. Он более надежен и отличается более долгим сроком службы, чем синхронный.


Кроме того, он экономически более выгоден, наряду с минимальными затратами на его обслуживание. Они чаще всего применяются в качестве резервного или автономного источника питания.


Вот почему вполне обосновано решение многих заинтересованных лиц, выполнить асинхронный электродвигатель своими руками.


За основу при этом можно взять подходящий двигатель мощностью полтора киловатта переменного тока. Частота вращения вала, при этом, должна быть не меньше, девятьсот шестидесяти, оборотов в минуту.


В качестве генератора подобный мотор работать не в состоянии, вот почему требуется либо доработка роторной части, либо ее замена. Для того чтобы иметь представление о конечном варианте стоит обратить внимание на ряд фото самодельного двигателя, которые помогут наглядно увидеть реализуемую цель.


Предлагаемый для преобразования двигатель имеет необходимые уплотнения в нужных местах, что позволит увеличить период от одного техобслуживания до другого из-за невозможности попадания грязи или пыли. Удобно также установить ламы в ту сторону, в какую необходимо без проблем.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Сгорела ручная дрель? Есть несложный способ ее восстановить и как бы попутно переделать на постоянное напряжение 12 В. Также вполне реально переделать на 12 В и обычную рабочую дрель, не обязательно поломанную, просто так совпало.
В основном все дрели на 220 В имеют в своем составе коллекторный электродвигатель. И очень часто он выходит из строя по причине сгорания статора. Хотя ротор с ним имеют почти один рабочий ток, статор выгорает чаще, так как стоит на месте и имеет меньшее охлаждение по сравнению с ротором.

Переделка ручной дрели с переменного напряжения 220 В на постоянное напряжение 12 В

Переходим к переделке. Разбираем дрель. Отвинчиваем винты крепления и снимаем верхнюю (боковую) крышку.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Вынимаем электродвигатель, вынимаем ротор из статора.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Наблюдаем сгоревшую обмотку статора. Его теперь можно только выбросить.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Диагностируем щетки. При полном износе их необходимо заменить. Эти вроде ещё послужат.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Далее, для переделки нам понадобятся два полюсных полукруглых магнита. Их можно найти в подобных двигателях постоянного тока, но если нет, то их можно заказать на

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Вклеиваем магниты в корпус. Два всего, один для каждой стороны.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Устанавливаем щетки в посадочные пазы.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Для проверки берем аккумулятор 12 В.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Подключаем и проверяем работу пока только с одним магнитом.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Все работает. Устанавливаем кнопку. В ней стоит диммер, который скорей всего, нужно будет удалить, если он не будет работать.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Подключаем питание к вилке.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Теперь направление вращения вала дрели можно изменить сменив полярность питания.
Пробуем сверлить.

Как восстановить сгоревшую дрель переделав ее с 220 В на 12 В

Конечно дрель потеряла в мощности, если сравнивать ее работу с прошлым периодом на 220В. Но работать и сверлить ей при напряжении 12 В все же вполне возможно. Поэтому смысл в этой переделки все же есть.

Смотрите видео

Читайте также: