Поделки по генетике
Нативная цепь молекулы ДНК может содержать несколько миллионов атомов. В водном растворе цепи ДНК несут слабый отрицательный заряд и отталкиваются друг от друга. Если в растворе в достаточном количестве присутствуют положительно заряженные ионы, они притягиваются к цепям ДНК и нейтрализуют их заряд, в результате чего цепи ДНК могут слипаться. Таким образом, изменяя концентрацию соли, можно заставить отдельные фрагменты ДНК диссоциировать или, наоборот, объединяться. Это явление и лежит в основе методов выделения ДНК из клеток.
Почти все необходимое для выделения ДНК вы сможете найти на кухне. Сначала надо приготовить буферный раствор (буфер). Налейте 120 мл воды в чистую стеклянную емкость, добавьте 1,5 г (1/4 чайной ложки) поваренной соли, 5 г (1 чайную ложку) питьевой соды. В буфер надо добавить немного детергента – 5 мл (1 чайную ложку) шампуня или жидкого средства для стирки. Можно попробовать какие-нибудь другие детергенты, например средства для мытья посуды, но туалетное мыло лучше не использовать, т.к. в нем содержится большое количество добавок. Детергент выполняет две функции: разрушает клеточные стенки и способствует расщеплению крупных белков, которые иначе могут выделиться вместе с ДНК. Для того чтобы замедлить деградацию выделенной ДНК, буфер перед началом опыта охлаждают в кастрюле или любом другом сосуде, наполненном смесью колотого льда с солью.
Для приготовления буфера лучше использовать очищенную поваренную соль и дистиллированную воду, но подойдут также йодированная соль и покупная вода в бутылках или фильтрованная вода. Водопроводную воду из-под крана лучше не использовать.
В качестве источника ДНК подойдут овощи или фрукты. Хорошие результаты получаются с луком, чесноком, бананами и томатами. Но вы можете попробовать какой-нибудь другой фрукт или овощ. Возьмите его, разрежьте на мелкие кусочки, поместите в подходящий по размерам чистый сосуд, добавьте немного воды и тщательно измельчите до однородного состояния миксером с ножами (блендером), включая его несколько раз на 10 с с небольшими перерывами. Если нет миксера, можно использовать давилку для чеснока. При такой обработке клетки отделяются друг от друга, что способствует более эффективному действию детергента.
Поместите 5 мл полученного пюре в чистую емкость, добавьте 10 мл охлажденного буфера. Полученную смесь энергично перемешивайте в течение не менее 2 мин – в это время происходит разрушение клеточных стенок детергентом и выход содержимого клеток в раствор. Далее нужно отделить раствор, содержащий ДНК и другие молекулы, от нерастворимых остатков растительного материала. Для этого лучше всего использовать центрифугу (сепаратор): смесь прокрутите на центрифуге на низкой скорости в течение 5 мин, а затем, стараясь не взбалтывать осадок, слейте в длинный узкий сосуд (например, в пробирку, прозрачный пузырек из-под лекарств и т.п.) не менее 5 мл надосадочной жидкости.
Если у вас нет центрифуги, можно отфильтровать раствор через обычный кофейный фильтр или полотно. Если вам повезет, крупные частицы, все-таки прошедшие через фильтр, либо осядут на дно, либо будут плавать на поверхности. Для получения чистого раствора слейте его верхний слой, подождите, пока осядут остальные частицы, и затем аккуратно слейте (или перенесите пипеткой) жидкость в узкий сосуд.
Полученный раствор содержит фрагменты ДНК и множество других молекул – РНК, белков, углеводов и т.п.
Для экстракции ДНК необходимо небольшое количество изопропилового спирта (изопропанола, ИПС), предварительно сильно охлажденного в морозильнике. Используйте чистый изопропанол (без красителей и отдушек) в самой высокой концентрации, какую только удастся достать (обычно его продают в концентрации не ниже 70%). При помощи соломинки для коктейлей аккуратно нанесите 10 мл охлажденного спирта на поверхность раствора ДНК. Для этого погрузите соломинку в сосуд со спиртом и зажмите верхнее отверстие, затем опустите нижний конец соломинки в пробирку с раствором, прикоснитесь соломинкой к стенке и, слегка наклонив пробирку, позвольте спирту медленно стечь по стенке. Не набирайте спирт в трубочку (или пипетку) ртом! Если вы все сделали правильно, спирт, плотность которого меньше плотности буфера, останется на поверхности раствора.
Поместите тонкую стеклянную или деревянную палочку, например карандаш, в раствор таким образом, чтобы ее кончик оказался непосредственно под границей между буфером и спиртом, и очень осторожно в течение 1 мин поворачивайте попеременно в разные стороны. При этом наиболее длинные фрагменты ДНК накрутятся на палочку. Затем вытащите палочку – спирт заставит ДНК прилипнуть к концу палочки, и вы увидите на нем прозрачный вязкий осадок.
Конечно, в результате этой простой процедуры нельзя получить чистый препарат ДНК. В лаборатории в буфер добавляют ферменты, разрушающие млекулы РНК, которые иначе могут выделиться вместе с ДНК.
Даже после самой тщательной экстракции часть ДНК останется в растворе, образуя в нем невидимую паутину. При небольших дополнительных усилиях этот материал тоже можно увидеть. Некоторые красители, например метиленовый синий, связываются с заряженными фрагментами ДНК. Для окраски нитей, образованных оставшейся в растворе ДНК, достаточно добавить в него микроскопическое количество красителя – его молекулы свяжутся с ДНК, оставляя раствор неокрашенным. Возможно, для этой цели подойдут какие-либо пищевые красители или краски для тканей или волос – экспериментируйте!
Генетика (греч. genitos — порождающий, происходящий от кого-то) - наука о наследственности и изменчивости. Это определение отлично соответствует афоризму А.П. Чехова "Краткость - сестра таланта". В словах наследственность и изменчивость скрыта вся сущность генетики, к изучению которой мы приступаем.
Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному распределению генетического материала.
Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей. Вследствие этого формируется материал для главного направленного фактора эволюции - естественного отбора, который отбирает наиболее приспособленных особей.
Мы с вами - истинное чудо генетики :) Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них. Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая чудо вновь и вновь.
Ген и генетический код
Ген - участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.
В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК. Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта - ведь ДНК везде одинакова!
Это происходит потому, что в разных клетках одни гены "выключены", а другие "активны": транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.
Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)
Информация считывается непрерывно - внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы нецелесообразно разделять его на части. Стоп-кодоны - "знаки препинания" - есть между генами, которые кодируют разные белки.
Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.
Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.
Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)
Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.
Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.
Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.
Аллельные гены
Аллельные гены (греч. all?lon — взаимно) - гены, занимающие одинаковое положение в локусах гомологичных хромосом и отвечающие за развитие одного и того же признака. Такими признаками могут являться: цвет глаз (карий и голубой), владение рукой (праворукость и леворукость), тип волос (вьющиеся и прямые волосы).
Локусом (лат. locus — место) - в генетике обозначают положение определенного гена в хромосоме.
Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами - AA, Aa, aa. Писать только один ген было бы ошибкой.
Признаки бывают доминантными (от лат. dominus - господствующий), которые проявляются у гибридов первого поколения, и рецессивными (лат. recessus - отступающий) - не проявляющимися. У человека доминантный признак - карий цвет глаз (ген - А), рецессивный признак - голубой цвет глаз (ген - а). Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А - доминантный аллель подавляет a - рецессивный аллель.
- Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) - AA, aa
- Гетерозиготный (в случае, когда один ген доминантный, а другой - рецессивный) - Аа
Понять, какой признак является подавляемым - рецессивным, а какой подавляющим - доминантным, можно в результате основного метода генетики - гибридологического, то есть путем скрещивания особей и изучения их потомства.
Гаметы
Гамета (греч. gamos - женщина в браке) - половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом - n, при слиянии двух гамет набор восстанавливается до диплоидного - 2n.
- В гаметах представлены все гены, составляющие гаплоидный набор хромосом - n
- В каждую гамету попадает только одна хромосома из гомологичной пары
- Число возможных вариантов гамет можно рассчитать по формуле 2 i = n, где i - число генов в гетерозиготном состоянии в генотипе
К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 2 4 = 16 гамет.
Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa. При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет - это ошибка.
К примеру, у особи "AA" мы напишем только одну гамету "А" и не будем повторяться, а у особи "Aa" напишем два типа гамет "A" и "a", так как они различаются между собой.
Гибридологический метод
Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов генетики, предложенный самим Грегором Менделем - гибридологический.
Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания. С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных генов.
Цитогенетический метод
С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии наследственных заболеваний.
Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера, Клайнфельтера).
Генеалогический метод (греч. genealogia — родословная)
Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных. Человек, с которого начинают составление родословной - пробанд. В результате изучения родословной врач-генетик может предположить вероятность возникновения тех или иных заболеваний.
По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: "рецессивный он или доминантный?", "сцеплен с полом или не сцеплен?"
На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного) рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:
- Заболевание проявляется только у гомозигот
- Родители клинически здоровы
- Если больны оба родителя, то все их дети будут больны
- В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
- Оба пола поражаются одинаково
Сейчас это может показаться сложным, но не волнуйтесь - решая генетические задачи вы сами "дойдете" до этих правил, и через некоторое время они будут казаться вам очевидными.
Близнецовый метод
Применение близнецового метода в генетике - вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи "один в один": такими являются однояйцевые близнецы, их появление подчинено случайности.
Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа - совокупности внешних и внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности строения внутренних органов и т.д.
Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство - шизофрения - развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Аббревиатура ДНК – это практически кроличья нора для международного научного сообщества. Она таит множество загадок и обещает ответить на важнейшие вопросы человечества, но не все так просто. Каждый новый шаг на пути к познанию ДНК дарит нам удивительные и порой пугающие открытия. Чем больше исследователи узнают об этих волшебных молекулах, тем более интригующими становятся открывающиеся нам перспективы и возможности.
10. Живые микросхемы
Фото: Live Science
Было время, когда ученые мечтали взглянуть на молекулы клеток и протекающие в них процессы поближе, но на их пути была одна серьезная преграда…
Дело в том, что исследователи хотели создать микроскопическое устройство на основе молекулы ДНК, которое бы вело себя как микросхема, и чтобы его можно было включать и выключать, как цифровое устройство. Проблема была в том, что для переключения режимов нужно было научиться использовать электричество, что для таких крошечных систем – задача весьма непростая.
Ученые наконец-то решили задачу, поместив между двумя слоями молекул ДНК антрахиноны (сложные вещества). Этот натуральный ингредиент легко перенес имплантацию и сохранил свое особенное качество – антрахиноны способны запускать окислительно-восстановительные реакции.
Во время окислительно-восстановительного процесса электрон одновременно заряжает определенные молекулы и покидает другие. В результате и происходит желанный электрический импульс. Если антрахиноны стимулировать электродом, они справляются со своей функцией на отлично. В зависимости от количества электронов, микросхемы либо отключаются, либо проводят ток. Переключатели, каждый из которых в тысячи раз тоньше человеческого волоска, прокладывают дорогу для крошечных молекулярных устройств. Дальнейшая отладка и адаптация этого генетического кода в перспективе сможет позволить изучение химических реакций внутри клеток на абсолютно новом уровне, ранее абсолютно немыслимом и недоступном. Главной целью исследователей сейчас является поиск возможных путей лечения и профилактики сложнейших заболеваний.
9. Инъекции ДНК, помогающие излечить хромоту
Фото: The Telegraph
Если скаковая лошадь хромает, ее обычно усыпляют, что сопряжено с большими финансовыми потерями для ее хозяина. Это очень частая практика в случае с травмированными или старыми лошадьми. Традиционное лечение требует слишком много времени и практически не дает никаких гарантий на качественное восстановление животного, а содержание больного питомца абсолютно бессмысленно для настоящих предпринимателей.
С недавних пор эта проблема перестала быть непреодолимой, и с ней справились благодаря всему одному уколу. В ходе испытаний ученые выделили 2 гена и вкололи препарат на их основе в ноги хромых лошадей. Результаты были просто ошеломительными! Травма не просто прошла – через два месяца эти лошади уже снова смогли выступать на скачках и показывали конкурентоспособные результаты. Революционные гены VEGF164 и BMP2 были введены прямо в поврежденные связки и сухожилия, и молекулы ДНК спровоцировали образование новые кровеносных сосудов, костной ткани и развитие новой хрящевой ткани. В итоге подопытные животные пришли в форму, которой гордились еще до травмы.
Инновационная терапия пока что не особо распространена, но у нее явно огромный потенциал, как в плане лечения зверей, так и для исцеления людей. Лошади, принявшие участие в эксперименте, пребывали в своей лучшей форме еще на протяжении целого года после уколов, что дает надежду на то, что люди с травмами не только связок или сухожилий, но и позвоночника, смогут вновь испытать радость движения.
8. Молекулярный крючок для поиска генов древних гоминидов
Фото: Smithsonian Magazine
Генеалогическое древо человеческого вида до сих пор остается неполным, хотя лучшие ученые занимаются этим вопросом уже несколько десятилетий. Антропологи неустанно работали с имеющимися у них образцами, но в нашем распоряжении было слишком мало останков первых людей и гоминидов. Однако новая технология позволяет добыть информацию о старинной ДНК даже без человеческих скелетов.
В Бельгии, Хорватии, Франции, России и Испании ученые собрали образцы грунта и очистили их, чтобы выделить образцы человеческой ДНК. Повысить шанс обнаружения этого материала удалось благодаря тому, что 85 образцов земли были изъяты с мест археологических раскопок, организованных в районе остановок древних племен, чей возраст составляет от 14 000 до 550 000 лет. В лаборатории исследователям удалось обнаружить очень богатую коллекцию генов.
Неожиданный поворот произошел во время экспериментов с бабочкой вида Junonia coenia.
После дезактивации гена optix ее крылья из рыжих превратились в полностью голубые с красивыми переливами. Радужные переливы и оттенки синего цвета зависят от структуры чешуек крыла, поэтому подобные мутации навели ученых на мысли о том, что ген optix влияет на пигментацию еще и на физическом уровне, подавляя структурированность этих самых чешуек. Оба гена, вероятно, отвечают за некоторые очень важные эволюционные изменения и качества, включая защитный механизм под названием мимикрия.
6. Исследование больных эмбрионов
Чтобы научиться лечить опасное заболевание крови, китайские ученые воссоздали человеческих эмбрионов. Для проекта они клонировали эмбрионов и использовали биологический материал, взятый у пациента, страдающего от бета-талассемии.
Как и многие другие генетические расстройства, бета-талассемия возникает из-за сбоя в ДНК человека. Наш генетический код состоит из 4 основных элементов - аденина, цитозина, гуанина и тимина (A, C, G, T). Эти азотистые основания содержат в себе целый учебник по формированию и функционированию человеческого тела.
Замену одного единственного основания на другое принято называть точечной мутацией, из-за которой обычно и развиваются две трети генетических заболеваний. Чтобы выявить точечную мутацию, виновную в возникновении бета-талассемии, ученые проверили 3 миллиарда этих органических соединений в генетическом коде пациента.
Оказалось, что все дело в замене одного гуанина. Метод базового редактирования ДНК позволил заменить гуанин на аденин и впервые вылечить заболевание на генетическом уровне. По мнению экспертов в будущем базовое редактирование может оказаться полезным для борьбы со многими другими наследственными заболеваниями.
5. Вторая кожа
Любители солнца скоро смогут загорать, не переживая за свою кожу. Все мы знаем, что ультрафиолетовое излучение связано с повышенным риском заболеть раком кожи, но эта проблема скоро будет полностью решена. В 2017 году ученые разработали необычную защиту от загара. Новое средство сделано на основе ДНК спермы семги, и оно с легкостью защищает человека от вредного воздействия ультрафиолета, как если бы это была ваша вторая кожа. Чем дольше обработанный участок кожи подвержен солнечному свету, тем активнее рыбная защита. Все те, кто обожает жариться на солнышке часами, теперь наконец-то смогут забыть заодно и о сухости кожи, ведь тонкий слой инновационного средства сохраняет естественную влагу кожи и не позволяет ей пересушиться под действием обжигающих лучей.
4. В молекуле ДНК можно хранить музыку
Чтобы решить назревающую проблему нехватки места для хранения информации, ученые обратились к молекуле ДНК. Они захотели доказать, что никакая другая среда не сможет сравниться с генами по своей долговечности и вместительности.
Затем эти соединения синтезировали и расположили в соответствии с двоичной последовательностью избранных музыкальных композиций. В виде единиц и нулей эти песни занимали 140 мегабайт жесткого диска, а после их конвертации в молекулу ДНК они стали размером не больше микроскопической песчинки. Завершающим этапом проверки нового способа хранения информации стала обратная конвертация файла из молекулярного формата в двоичный, и ни одна композиция от этого никак не пострадала.
3. Воссоздание лиц преступников по образцам их ДНК
Фото: National Geographic
Преступники, чья генетическая информация попала в базу данных служб правопорядка, имеют все основания возненавидеть собственную ДНК, следы которой они нередко оставляют на местах своих злодеяний. Совпадение этих данных очень быстро посадит за решетку любого виновного. Другое дело, что расследование обычно заходит в тупик, если на месте преступления обнаружены биологические следы злоумышленника, который раньше никогда не попадался полиции.
Но совсем скоро и в этом случае следователи смогут устанавливать личность неизвестного. Например, с помощью техники, позволяющей воссоздать лицо человека на основании собранных генетических образцов. Метод назвали реконструкцией фенотипа по ДНК, и он может рассказать следователям, какого цвета у преступника волосы, глаза и кожа, откуда родом его семья, и даже есть ли у него веснушки.
Гены могут поведать ну очень многое о внешности человека. Чтобы отточить новую технологию опознания и добиться максимальной точности в реконструкции внешности, ученые просканировали лица и ДНК нескольких добровольцев. Специальное программное обеспечение сопоставило генетические маркеры с формой челюсти, щек и носа участников эксперимента, и это помогло создать алгоритм для рабочей схемы реконструкции цифровых портретов подозреваемых. Вдобавок новый способ поможет воссоздавать внешность неопознанных жертв, чьи останки на момент их обнаружения сохранились слишком плохо.
2. Кража генов
Микроскопические подводные организмы под названием тихоходки недавно не на шутку поразили ученых своей ДНК. Расшифровка генома этого существа позволила раскрыть тайну его невероятных способностей, которых раньше никто не мог объяснить.
Эти крошечные беспозвоночные организмы невероятно выносливые. Они могут выживать в космосе, в смертельном холоде (до – 271°C на протяжении 8 часов), в условиях экстремально жарких температур (1 час в кипящей воде), под воздействием высочайшего давления (до 600 МПа), радиации (до 570 000 рентген, для человека смертельная доза – всего 500 рентген) и могут обходиться без воды и еды почти 10 лет. Тардиграды (другое название типа) – настоящие супергерои царства животных!
Как это происходит? Тихоходки научились выживать за счет процесса экстремального обезвоживания (ангидробиоз). Высушивание разбивает ДНК этого организма на несколько отдельных фрагментов. Когда вновь возникают условия для нормальной жизнедеятельности, и приходит пора восстанавливаться, поврежденный геном возвращается в свое исходное состояние. Во время этого процесса поры клеток тардиграды очень сильно увеличиваются в размерах и теоретически могут захватывать и фрагменты посторонней ДНК. Следующее поколение тихоходок с более богатым генотипом становится заодно и более выносливым. Например, гены бактерий в условиях стресса ведут себя устойчивее, чем гены животных организмов, и приобретенное качество позволяет крошечным созданиям преодолевать трудности проще других своих собратьев.
Согласно другому недавнему исследованию тихоходки способны перенимать в среднем до 1% генов, что значит, что образец с 38 тысячами генов был просто испорчен (загрязнен, заражен). Даже если это и так, невероятно живучие микроскопические существа все равно изменили представления ученых об эволюции и генетическом наследовании.
1. С помощью ДНК можно взламывать компьютеры
Фото: The Guardian
Это звучит как история из фильма про далекое будущее, но на самом деле такое фантастическое достижение уже было совершено в реальной жизни. Да-да, ученые взломали компьютер с помощью молекулы ДНК. В 2017 году группа исследователей из Университета Вашингтона (University of Washington) создала вредоносную программу и закодировала ее в последовательность генов.
Переход из биологического формата в цифровой произошел тогда, когда целевой компьютер секвенировал предоставленную ему синтетическую нить ДНК. Вирус был активирован и предоставил исследователям полный удаленный контроль над машиной, сразу после того как программа конвертировала комбинацию азотистых оснований A, C, G и T обратно в компьютерный код. Пока что подобный вид взломов еще очень далек от массового, но в будущем он вполне может стать опасным инструментом в руках злоумышленников.
Целью создания такого необычного вируса было продемонстрировать уязвимость дешифровального оборудования, которое использует в своей работе программное обеспечение с открытым исходным кодом. Определение последовательностей молекул ДНК и базы генетических данных становятся все более востребованными во многих научных сферах, поэтому зашифрованные таким образом вирусы теоретически могут нанести немалый вред.
Содержание:
Генная инженерия — это современное направление биотехнологии, объединяющее знания, приемы и методики из целого блока смежных наук — генетики, биологии, химии, вирусологии и так далее — чтобы получить новые наследственные свойства организмов.
Перестройка генотипов происходит путем внесения изменений в ДНК (макромолекулу, обеспечивающую хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов) и РНК (одну из трех основных макромолекул, содержащихся в клетках всех живых организмов).
Если внести в растение, микроорганизм, организм животного или даже человека новые гены, можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. С этой целью сегодня генная инженерия используется во многих сферах. Например, на ее основе сформировалась отдельная отрасль фармацевтической промышленности, представляющая собой одну из современных ветвей биотехнологии.
История развития
Истоки
Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.
На подъеме
К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.
Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.
Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.
Новая эра
В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.
Технологии генной инженерии
Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.
Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.
Есть и другие методы генной инженерии, например, ZFN и TALEN.
- ZFN разрезает ДНК и вставляет туда заготовленный заранее новый фрагмент с помощью белков с ионами цинка (отсюда название — Zinc Finger Nuclease).
- TALEN делает то же самое, только используя TAL-белки. Для обеих технологий приходится создавать отдельные белки, а это очень долгая работа, поэтому пока два этих метода особого применения не нашли.
Где и как применяется генная инженерия
Медицина
Уже сейчас активно применяется инсулин человека (хумулин), полученный посредством рекомбинантных ДНК. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. С 1982 года компании США, Японии, Великобритании и других стран производят генно-инженерный инсулин.
Кроме того, несколько сотен новых диагностических препаратов уже введены в медицинскую практику. Среди лекарств, находящихся в стадии клинического изучения, препараты, потенциально лечащие артрозы, сердечно-сосудистые заболевания, онкологию и СПИД. Среди нескольких сотен генно-инженерных компаний 60% заняты именно разработкой и производством лекарственных и диагностических средств.
Сельское хозяйство
В сельском хозяйстве одна из важнейших задач генной инженерии — получение растений и животных, устойчивых к вирусам. В настоящее время уже есть виды, способные противостоять воздействию более десятка различных вирусных инфекций.
Еще одна задача связана с защитой растений от насекомых-вредителей. Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами. Например, трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника — к разным насекомым, в том числе и к хлопковой совке.
Использование генной инженерии позволило сократить применение инсектицидов (препаратов для уничтожения насекомых) на 40–60%.
С помощью генной инженерии пытаются решить и экологические проблемы. Так, уже созданы особые сорта растений с функцией очистки почвы. Они поглощают цинк, никель, кобальт и иные опасные вещества из загрязненных промышленными отходами почв.
Скотоводство
В Кемеровской области работа генетиков позволила получить устойчивое к вирусу лейкоза племенное поголовье высокопродуктивных животных. Для проведения эксперимента кузбасские ученые отобрали здоровых коров черно-пестрой породы массой до 500 кг. Животным трансплантировали модифицированные эмбрионы, устойчивые к вирусу лейкоза. В середине сентября 2020 года родилось 19 телят с измененными генами.
По словам Зубовой, лейкоз крупного рогатого скота — вирусная хронически неизлечимая болезнь, при которой возникают поражение кроветворной системы и новообразования. Данное заболевание наносит значительный ущерб генофонду пород и мясной промышленности в целом, потому что мясо зараженных животных запрещено употреблять в пищу. Единственным доступным методом борьбы с лейкозом ранее было только уничтожение зараженного скота.
Этот успех позволяет говорить о том, что в дальнейшем будет возможно редактировать гены крупного рогатого скота и от других болезней.
С прицелом на человека
В 2009 году группа ученых под руководством молодого исследователя Джея Нейтца из Вашингтонского университета сумели с помощью генной терапии вернуть обезьянам способность различать оттенки зеленого и красного, которой они были лишены от рождения.
В область сетчатки глаза двух подопытных обезьян был введен безвредный вирус, несущий недостающий ген фоточувствительного рецептора. Вскоре после процедуры обе обезьяны начали различать оттенки красного и зеленого на сером фоне. Два года наблюдения не выявили у них каких-либо нарушений, поэтому ученые не исключают, что данную методику уже вскоре можно будет применять у людей, страдающих дальтонизмом.
Ученые шагнули еще дальше и уже пробуют выращивать в теле животных органы для трансплантации людям. Для минимизации риска отторжения тканей животным вводят специальные гены. Этими опытами занимается научная лаборатория Рослинского института в Великобритании, которая представила миру овцу Долли.
В 2019 году британские ученые вывели кур, яйца которых содержат два вида человеческих белков, способных противодействовать артриту и некоторым видам онкологических заболеваний. В яйцах содержится человеческий белок под названием IFNalpha2a, обладающий мощными противовирусными и противораковыми свойствами, а также человеческий и свиной вариант белка под названием макрофаг-CSF, который планируют использовать для создания препарата, стимулирующего самостоятельное заживление поврежденных тканей.
Изменение ДНК человека
Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.
14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.
Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.
После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.
Генная терапия
Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.
Существует три основных стратегии использования генной терапии:
В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.
Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.
После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.
Этическая сторона вопроса
В 1997 году ЮНЕСКО выпустила Всеобщую декларацию о геноме человека и его правах, рекомендовав мораторий на генетическое вмешательство в зародышевую линию человека, а в декабре 2015 года на международном саммите по геномному редактированию человека изменение гаметоцитов и эмбрионов для генерации наследственных изменений у людей было объявлено безответственным.
Российское сообщество генетиков в большинстве своем считает, что такие эксперименты на данный момент преждевременны и требуют более глубокого исследования и обсуждений.
Страх неизвестности
Вариантов развития событий в области генной инженерии существует множество, и далеко не все они изучены и, в принципе, известны. Поэтому они должны быть последовательно зафиксированы и регламентированы.
Естественно, больше всего опасений вызывают плохие сценарии развития событий. Как правило, все начинается с помощи людям и изобретения новых лекарств. Но потом человек может прийти к желанию сделать своего ребенка светловолосым и зеленоглазым или создать армию универсальных солдат, не боящихся боли и не ведающих страха.
Эксперты убеждены, что генная инженерия — это будущее медицины. Возможность избавить младенца от пожизненного гнета заболевания, излечить людей от рака, найти лекарство против ВИЧ — за всем этим будет стоять генная инженерия. При этом желание человека изменить, например, цвет глаз или предотвратить наследственное заболевание, несмотря на все риски, будет только расти. И похоже, что остановить этот процесс уже не представляется возможным.
Читайте также: